|
|
A000120号 |
| 1’s计数序列:n的二进制展开式中的1’s数(或n的二进制权重)。 (原名M0105 N0041)
|
|
1712
|
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,4
|
|
评论
|
n的二进制重量也称为n的汉明重量[术语“汉明重量”是以美国数学家理查德·卫斯利·汉明(1915-1998)的名字命名的-阿米拉姆·埃尔达尔,2021年6月16日]
a(n)也是最大的整数,2^a(n)除以二项式(2n,n)=A000984号(n) ●●●●-贝诺伊特·克洛伊特2002年3月27日
要构造序列,请从0开始并使用规则:如果k>=0和a(0),a(1)。。。,a(2^k-1)是第一个2^k项,然后下一个2^k项是a(0)+1,a(1)+1。。。,a(2^k-1)+1-贝诺伊特·克洛伊特2003年1月30日
分形序列的示例。也就是说,如果省略序列中的其他每个数字,就会得到原始序列。当然,这可以重复。所以如果你形成序列a(0*2^n),a(1*2^n),a。。。(对于任何整数n>0),您可以得到原始序列克里斯托弗·希尔斯(AT)sepura.co.uk,2003年5月14日
帕斯卡三角形的第n行有2^k个不同的奇数二项式系数,其中k=a(n)-1-Lekraj Beedassy公司2003年5月15日
从a(0)=0开始,同态0->01、1->12、2->23、3->34、4->45等的不动点-罗伯特·威尔逊v2006年1月24日
a(n)是神秘计算器序列中n出现的次数:A005408号,A042964号,A047566型,A115419号,A115420号,A115421号. -杰里米·加德纳2006年1月25日
a(n)是丢番图方程2^m*k+2^(m-1)+i=n的解的个数,其中m>=1,k>=0,0<=i<2^(m-1);a(5)=2,因为只有(m,k,i)=(1,2,0)[2^1*2+2^0+0=5]和(m,k,i)=(3,0,1)[2^3*0+2^2+1=5]是解-Hieronymus Fischer公司2006年1月31日
k的第一次出现,k>=0,是在a(2^k-1)处-罗伯特·威尔逊v2006年7月27日
序列由T^(无穷大)(0)给出,其中T是转换任何单词w=w(1)w(2)的运算符。。。w(m)转化为T(w)=w(1)(w(1。。。w(m)(w(m)+1)。即T(0)=01,T(01)=0112,T(0112)=01121223-贝诺伊特·克洛伊特2009年3月4日
对于n>=2,a(k(2^n-1))不是n的倍数的最小k是2^n+3-弗拉基米尔·舍维列夫,2009年6月5日
三角不等式:a(k+m)<=a(k)+a(m)。当且仅当C(k+m,m)为奇数时,等式成立-弗拉基米尔·舍维列夫2009年7月19日
序列的前2^n项中k值的出现次数等于二项式(n,k),也等于数组中k列的前n-k+1项之和A071919号例如,k=2,n=7:a(0)到a(2^7-1)中有21=二项式(7,2)=1+2+3+4+5+6 2Brent Spillner(Spillner(AT)acm.org),2010年9月1日,简化为R.J.马塔尔2017年1月13日
设m是n的组成部分列表中按字典顺序列出的部分数,a(k)=n-长度(组成部分(k))表示所有k<2^n和所有n(参见示例);A007895号给出了组成奇数部分的等价物-乔格·阿恩特2012年11月9日
发件人丹尼尔·福格斯2015年3月13日:(开始)
只需将第k行(二进制权重等于k)从0累加到2^n-1,即可得到二项式系数C(n,k)。(请参见A007318号.)
0 1 3 7 15
0:O|.|..|….||
1:|O|O.|O…|(O…|)O|
2:||O|O操作。|O O O。哦|
3:|||O|O O O O|
4:||||O|
由于其分形性质,该序列非常有趣。
(结束)
n的二进制权重是n的数字和(基数b)的特殊情况-丹尼尔·福格斯2015年3月13日
前n项的平均值比[a(n+1),…,a(2n)]的平均值小1,这也是[a(n+2),……,a的平均值-基督教完美2015年4月2日
a(n)也是具有高架桥编号n的整数分区的最大部分。整数分区的高架桥编号定义如下。考虑整数分区的费雷尔斯板的东南边界,并考虑通过将每个东阶梯替换为1而每个北阶梯(最后一个除外)替换为0而获得的二进制数。根据定义,相应的十进制形式是给定整数分区的高架桥编号。“Viabin”是由“via binary”创造的。例如,考虑整数分区[2,2,2,1]。费雷尔板块的东南边界产量为10100,通往20号高架桥-Emeric Deutsch公司2017年7月20日
a(n)也称为n的二进制表示的人口数-柴华武2020年5月19日
|
|
参考文献
|
Jean-Paul Allouche和Jeffrey Shallit,《自动序列》,剑桥大学出版社,2003年,第119页。
Donald E.Knuth,《计算机编程的艺术》,第4A卷,组合算法,第7.1.3节,问题41,第589页-N.J.A.斯隆2012年8月3日
曼弗雷德·施罗德,分形,混沌,幂律。W.H.Freeman,1991年,第383页。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
|
|
链接
|
N.J.A.斯隆,n=0..10000时的n,a(n)表
Franklin T.Adams-Waters和Frank Ruskey,数字和和及其他数字计数序列的生成函数,JIS,第12卷(2009年),第09.5.6条。
J.-P.Allouche,格雷厄姆1970年论文中的一个不等式,整数21A(2021),#A2。
Jean-Paul Allouche和Jeffrey Shallit,k-正则序列的环,理论计算机科学。,第98卷(1992年),第163-197页。(作者网页上的PS文件。)
Jean-Paul Allouche、Jeffrey Shallit和Jonathan Sondow,由数字块计数定义的级数求和,arXiv:math/0512399[math.NT],2005-2006年。
Jean-Paul Allouche、Jeffrey Shallit和Jonathan Sondow,由数字块计数定义的序列求和《数论》,第123卷(2007年),第133-143页。
理查德·贝尔曼和哈罗德·夏皮罗,关于加法数论中的一个问题《数学年鉴》。,第49卷,第2期(1948年),第333-340页-N.J.A.斯隆2009年3月12日
Jean Coquet,数字和的幂和《数论》,第22卷,第2期(1986年),第161-176页。
卡尔·迪尔彻和拉里·埃里克森,超二进制展开式与Stern多项式,Elec.J.Combin,第22卷(2015年),#P2.24。
约瑟夫·埃什格瓦勒(Josef Eschgfäller)和安德烈亚·斯卡潘特(Andrea Scarpante),二分法随机数发生器,arXiv:1603.08500[math.CO],2016年。
伊曼纽尔·费兰德,泰勒公式的变形《整数序列杂志》,第10卷(2007年),第07.1.7条。
史蒂文·芬奇(Steven R.Finch)、帕斯卡·塞巴(Pascal Sebah)和柴乔·白(Zai-Qiao Bai),帕斯卡三角中的奇数项,arXiv:0802.2654[math.NT],2008年。
菲利普·弗拉乔莱特(Philippe Flajolet)、彼得·格拉布纳(Peter Grabner)、彼得·基申霍夫(Peter Kirschenhofer)、赫尔穆特·普罗丁格(Helmut Prodinger)和罗伯特·提希(Robert F.Tichy),梅林变换与渐近:数字和,理论。计算机科学。,第123卷,第2期(1994年),第291-314页。
迈克尔·吉兰德,一些自相似整数序列.
P.J.Grabner、P.Kirschenhofer、H.Prodinger和R.F.Tichy,关于digits和函数的矩《斐波那契数的应用》,第5卷(圣安德鲁斯,1992年),克鲁沃学院。出版物。,多德雷赫特,1993年,263-271。
罗纳德·格雷厄姆,关于本原图和最优顶点分配,国际。Conf.组合。数学。(纽约,1970年),《纽约科学院年鉴》,第175卷,1970年,第170-186页。
Khodabakhsh Hessami Pilehrood和Tatiana Hessami-Pilehroud,广义欧拉常数函数及其导数值的Vacca型级数《整数序列》,第13卷(2010年),第10.7.3条。
尼克·霍布森,此序列的Python程序.
Kathy Q.Ji和Herbert S.Wilf,极端回文,arXiv:math/0611465[math.CO],2006年。
盖·卢查德和赫尔穆特·普罗丁格,整数与某些允许Shallit型恒等式组合中的最大缺失值,J.国际顺序。,第16卷(2013年),第13.2.2条。
J.-L.Mauclaire和Leo Murata,关于q可加函数,程序。日本科学院。序列号。数学。科学。,第59卷,第6期(1983年),第274-276页。
J.-L.Mauclaire和Leo Murata,关于q可加函数,程序。日本科学院。序列号。数学。科学。,第59卷,第9期(1983年),第441-444页。
M.D.McIlroy,二进制整数中1的个数:边界和极值属性,SIAM J.计算。,第3卷(1974年),第255-261页。
凯里·米切尔,整数序列的螺旋型图像, 2013.
萨姆·诺斯希尔德,斯特恩双原子序列0,1,1,2,1,3,2,3,1,4,。。。阿默尔。数学。月份。,第117卷,第7期(2010年),第581-598页。
Theophanes E.Raptis,通过归纳组合层次的有限信息数,arXiv:1805.06301[physics.gen-ph],2018年。
卡洛·桑纳,关于数字和不同的整数的算术级数《整数序列杂志》,第15卷(2012年),第12.8.1条-N.J.A.斯隆2012年12月29日
Nanci Smith,问题B-82,光纤。夸脱。,第4卷,第4期(1966年),第374-375页。
乔纳森·桑多,欧拉常数及其“交替”模拟ln 4/Pi的新Vacca型有理级数,arXiv:数学/0508042[math.NT]2005;《加法数理论》,D.和G.Chudnovsky主编,施普林格出版社,2010年,第331-340页。
拉尔夫·斯蒂芬,一些具有(相对)简单普通生成函数的分治序列, 2004.
拉尔夫·斯蒂芬,生成函数表.
拉尔夫·斯蒂芬,分而治之的生成函数。一、基本序列,arXiv:math/0307027[math.CO],2003年。
Kenneth B.Stolarsky,与二项式系数奇偶校验相关的数字和的幂和和,SIAM J.应用。数学。,第32卷(1977年),第717-730页。参见B(n)-N.J.A.斯隆2014年4月5日
J.R.Trollope,二进制数字和的显式表示,数学。Mag.,第41卷,第1期(1968年),第21-25页。
罗伯特·沃克,自相似懒惰Canon数序列.
埃里克·魏斯坦的数学世界,二元的,数字计数,斯托拉斯基-哈伯斯常数,数字和.
维基百科,汉明重量.
Wolfram研究公司,帕斯卡三角形中的数字.
“核心”序列的索引项
与n的二进制展开相关的序列的索引项
哥伦比亚或自身编号和相关序列的索引条目
映射不动点序列的索引项
|
|
配方奶粉
|
a(0)=0,a(2*n)=a(n),a(2*n+1)=a(n)+1。
a(0)=0,a(2^i)=1;否则,如果n=2^i+j且0<j<2^i,a(n)=a(j)+1。
G.f.:乘积{k>=0}(1+y*x^(2^k))=和{n>=0{y^a(n)*x^n-N.J.A.斯隆2009年6月4日
a(n)=a(n-1)+1-A007814号(n) =log_2(A001316号(n) )=2n-A005187号(n)=A070939号(n)-A023416号(n) ●●●●-亨利·博托姆利2001年4月4日;已由更正拉尔夫·斯蒂芬2002年4月15日
a(n)=log_2(A000984号(n)/A001790号(n) )-贝诺伊特·克洛伊特2002年10月2日
对于n>0,a(n)=n-和{k=1..n}A007814号(k) ●●●●-贝诺伊特·克洛伊特2002年10月19日
a(n)=n-和{k>=1}层(n/2^k)=n-A011371号(n) ●●●●-贝诺伊特·克洛伊特2002年12月19日
通用公式:(1/(1-x))*和{k>=0}x^(2^k)/(1+x^-拉尔夫·斯蒂芬2003年4月19日
a(0)=0,a(n)=a(n-2^层(log2(n)))+1。示例:a(6)=a(6-2^2)+1=a(2)+1=a(2-2^1)+1=1=a(0)+2=2;a(101)=a(101-2^6)+1=a(37)+1=a(37-2^5)+2=a(5-2^2)+3=a(1-2^0)+4=a(0)+4=4;a(6275)=a(6275-2^12)+1=a(2179-2^11)+2=a(131-2^7)+3=a(3-2^1)+4=a(1-2^0)+5=5;a(4129)=a(4129-2^12)+1=a(33-2^5)+2=a(1-2^0)+3=3-Hieronymus Fischer公司2006年1月22日
映射0->01,1->12,2->23,3->34,4->45。。。当f(i)=楼层(n/2^i)时,a(n)是序列f(0)、f(1)、f-菲利普·德尔汉姆2004年1月4日
当读取mod 2时,给出Morse-Thue序列A010060型.
让floor_pow4(n)表示n四舍五入到四的下一次幂,floor_pow(n)=4^floor(log4n)。则a(0)=0,a(1)=1,a(2)=1、a(3)=2,a(n)=a(楼层(n/floor_pow4(n)))+a(n%floor_pow4[n)]Stephen K.Touset(Stephen(AT)Touset.org),2007年4月4日
a(n)=n-总和{k=2..n}总和{j|n,j>=2}(楼层(log_2(j))-楼层(log_2-(j-1)))-Hieronymus Fischer公司2007年6月18日
a(n)=A138530号(n,2)对于n>1-莱因哈德·祖姆凯勒2008年3月26日
一个(A077436号(n) )=A159918号(A077436号(n) );一个(A000290型(n) )=A159918号(n) ●●●●-莱因哈德·祖姆凯勒2009年4月25日
a(n)=A063787号(n)-A007814号(n) ●●●●-加里·亚当森2009年6月4日
a(n)=A007814号(C(2n,n))=1+A007814号(C(2n-1,n))-弗拉基米尔·舍维列夫2009年7月20日
对于奇数m>=1,a((4^m-1)/3)=a((2^m+1)/3)+(m-1)/2(mod 2)-弗拉基米尔·舍维列夫2010年9月3日
a(n)-a(n-1)={1-a(n-1A007814号(n) =a(n-1),1当且仅当A007814号(n) =0,-1代表所有其他A007814号(n) }.-Brent Spillner(Spillner(AT)acm.org),2010年9月1日
一个(A001317号(n) )=2 ^a(n)-弗拉基米尔·舍维列夫2010年10月25日
a(n)=A139351号(n)+A139352号(n) =总和(_k){A030308号(n,k)}-菲利普·德尔汉姆2011年10月14日
发件人Hieronymus Fischer公司,2012年6月10日:(开始)
a(n)=总和{j=1..m+1}(楼层(n/2^j+1/2))-楼层(n/2 ^j)),其中m=楼层(log_2(n))。
n的p进制表示中位数>=d的一般公式,其中1<=d<p:a(n)=Sum_{j=1..m+1}(floor(n/p^j+(p-d)/p)-floor(n/p^j)),其中m=floor(log_p(n));g.f.:g(x)=(1/(1-x))*和{j>=0}(x^(d*p^j)-x^。(结束)
a(n)=A213629号(n,1)对于n>0-莱因哈德·祖姆凯勒2012年7月4日
a(n)=A240857型(n,n)-莱因哈德·祖姆凯勒2014年4月14日
a(n)=log_2(C(2*n,n)--加里·德特利夫斯2014年7月10日
和{n>=1}a(n)/2n(2n+1)=(伽马+对数(4/Pi))/2=A344716飞机,其中gamma是Euler常数A001620号; 参见Sondow 2005、2010和Allouche,Shallit,Sondow 2007-乔纳森·桑多2015年3月21日
对于任意整数基数b>=2,n的展开基数b的位数s_b(n)之和就是这个递推关系的解:如果n=0,则s_(n)=s_(b(n/b))+(n mod b)。因此,a(n)满足:如果n=0,a(n=0)=a(地板(n/2))+(n mod 2)。这很容易产生a(n)=Sum_{i=0..floor(log_2(n))}(floor(n/2^i)mod 2)。由此可以计算a(n)=n-和{i=1..floor(log_2(n))}floor(n/2^i)-马雷克·苏切内克2016年3月31日
求和{k>=1}a(k)/2^k=2*Sum_{k>=0}1/(2^(2*k)+1)=2*A051158号. -阿米拉姆·埃尔达尔2020年5月15日
和{k>=1}a(k)/(k*(k+1))=A016627号=对数(4)-伯纳德·肖特2020年9月16日
a(m*(2^n-1))>=n。当2^n-1>时,等式成立=A000265号(m) ,但在其他一些情况下,例如a(11*(2^2-1))=2和a(19*(2*3-1))=3-蓬图斯·冯·布罗姆森2020年12月13日
|
|
例子
|
使用公式a(n)=a(floor(n/floor_pow4(n)))+a(n mod floor_pow5(n)
a(4)=a(1)+a(0)=1,
a(8)=a(2)+a(0)=1,
a(13)=a(3)+a(1)=2+1=3,
a(23)=a(1)+a(7)=1+a(1”+a(3)=1+1+2=4。
加里·亚当森指出(2009年6月3日)这可以写成三角形:
0,
1,
1,2,
1,2,2,3,
1,2,2,3,2,3,3,4,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,...
行聚合到的位置A063787号.
发件人乔格·阿恩特2012年11月9日:(开始)
以零件列表形式连接n的组成(见注释):
[#]:a(n)成分
[ 0]: [0] 1 1 1 1 1
[ 1]: [1] 1 1 1 2
[ 2]: [1] 1 1 2 1
[ 3]: [2] 1 1 3
[ 4]: [1] 1 2 1 1
[ 5]: [2] 1 2 2
[ 6]: [2] 1 3 1
[ 7]: [3] 1 4
[ 8]: [1] 2 1 1 1
[ 9]: [2] 2 1 2
[10]: [2] 2 2 1
[11]: [3] 2 3
[12]: [2] 3 1 1
[13]: [3] 3 2
[14]: [3] 4 1
[15]: [4] 5
(结束)
|
|
MAPLE公司
|
A000120号:=proc(n)局部w,m,i;w:=0;m:=n;当m>0时,i:=m mod 2;w:=w+i;m:=(m-i)/2;od;w;末端:重量:=A000120号;
A000120号:=n->添加(i,i=转换(n,基数,2)):#彼得·卢什尼2011年2月3日
带(位):p:=n->ilog2(n-And(n,n-1)):seq(p(二项式(2*n,n)),n=0..200)#加里·德特利夫斯2019年1月27日
|
|
数学
|
表[DigitCount[n,2,1],{n,0,105}]
嵌套[扁平[#/.#->{#,#+1}]&,{0},7](*罗伯特·威尔逊v2011年9月27日*)
表[Plus@@IntegerDigits[n,2],{n,0,104}]
嵌套[Join[#,#+1]&,{0},7](*IWABUCHI Yu(u)ki先生2012年7月19日*)
Log[2,Nest[Join[#,2#]&,{1},14]](*给出2^14项,卡洛斯·阿尔维斯2014年3月30日*)
|
|
黄体脂酮素
|
(PARI){a(n)=如果(n<0,0,2*n-赋值((2*n)!,2))};
(PARI){a(n)=如果(n<0,0,subst(Pol(binary(n),x,1))};
(PARI){a(n)=如果(n<1,0,a(n \ 2)+n%2)}/*迈克尔·索莫斯2004年3月6日*/
(PARI)a(n)=我的(v=二进制(n));总和(i=1,#v,v[i])\\查尔斯·格里特豪斯四世2011年6月24日
(PARI)a(n)=normal2(二进制(n))\\更好地使用{A000120号=hammingweight}-M.F.哈斯勒2012年10月9日,2020年2月27日编辑
(PARI)a(n)=重量(n)\\米歇尔·马库斯2013年10月19日
(通用LISP)(defon地板到电源(n pow)(declare(fixnum pow))(expt pow(floor(log n pow;Stephen K.Touset(Stephen(AT)Touset.org),2007年4月4日
请参阅中的链接A139351号Fortran程序。
(哈斯克尔)
导入Data.Bits(Bits,popCount)
a000120::(整数t,位t)=>t->Int
a000120=popCount
a000120_list=0:c[1]其中c(x:xs)=x:c(xs++[x,x+1])
--莱因哈德·祖姆凯勒,2013年8月26日,2012年2月19日,2011年6月16日,2010年3月7日
(哈斯克尔)
a000120=连接
其中r=[0]:(map.map)(+1)(scanl1(++)r)
--卢克·帕尔默2014年2月16日
(鼠尾草)
定义A000120号(n) :
如果n<=1:返回整数(n)
返回A000120号(n//2)+n%2
[A000120号(n) 对于范围(105)内的n#彼得·卢什尼2012年11月19日
(鼠尾草)定义A000120号(n) :返回总和(n位数(2))#埃里克·施密特2013年4月26日
(Python)定义A000120号(n) :返回箱(n).计数('1')#柴华武2014年9月3日
(Python)
将numpy导入为np
A000120号=np.array([0],dtype=“uint8”)
对于范围(25)中的位范围:A000120号=np.附录(A000120号,新增(A000120号, 1))
打印([A000120号[n] 对于范围(0,105)中的n)#卡尔·海因茨·霍夫曼2022年11月7日
(Python)定义A000120号(n) :return n.bit_count()#需要Python 3.10或更高版本-蓬图斯·冯·布罗姆森2022年11月8日
(Python)另请参阅链接。
(Scala)(0到127).map(Integer.bitCount(_))//阿隆索·德尔·阿特2019年3月5日
(岩浆)[多重性(Intseq(n,2),1):n in[0..104]]//马吕斯·A·伯蒂2020年1月22日
(岩浆)[&+Intseq(n,2):[0..104]]中的n//马吕斯·A·伯蒂2020年1月22日
|
|
交叉参考
|
关于n的二进制展开式的基本序列是这个,A000788号,A000069号,A001969号,A023416号,A059015型,A007088号.
部分金额参见A000788号。有关运行长度,请参见A131534号。另请参阅A001792号,A010062型.
n中0的数量:A023416号和A080791号.
a(n)=n-A011371号(n) ●●●●。
以2-16为基数的n位数之和:此序列,A053735号,A053737号,A053824号,A053827号,A053828号,A053829号,A053830号,A007953号,A053831号,A053832号,A053833号,A053834号,A053835号,A053836号.
囊性纤维变性。A001620号,A344716飞机,A007814号,A063787号.
这是盖·斯蒂尔的序列GS(3,4)(参见A135416号).
囊性纤维变性。A055640号,A055641号,A102669号-A102685号,A117804号,A122840型,A122841号,A160093型,A160094型,A196563号,A196564号(用于底座10)。
囊性纤维变性。A230952型(boutrophedon变换)。
囊性纤维变性。A070939号(n的二进制表示长度)。
上下文中的序列:A105056号 A105061号 A105164号*A105062号 A106487号 A105102号
相邻序列:A000117号 A000118号 A000119号*A000121号 A000122号 A000123号
|
|
关键词
|
非n,容易的,核心,美好的,听到,看,基础
|
|
作者
|
N.J.A.斯隆
|
|
状态
|
经核准的
|
|
|
|