|
|
A000012号 |
| 最简单的正数序列:全1序列。 (原名M0003)
|
|
2356
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(列表;桌子;常数;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,1
|
|
评论
|
将n写成素数乘积的方法的数量。
将n写成2的不同幂之和的方式。
一个正整数无限序列的例子,其不同的两两串联都是素数-唐·雷布尔2005年4月17日
对于n>=0,设M(n)是第一行=(n n+1),第二行=(n+1 n+2)的矩阵。则a(n)=det的绝对值(M(n))-K.V.Iyer公司2009年4月11日
a(n)是一个完全乘法的算术函数。
a(n)也是n个节点上的完整图的数量巴勃罗·查韦斯,2009年9月15日
第n素数减去φ(素数(n));第n个素数的除数减去第n个素的完美分割数;第n素数的完美分割数;第n个非命题数的完美分割数-尤里·斯蒂潘·杰拉西莫夫2009年10月26日
对于所有n>0,a(n)=n的极限值序列*和{k>=n}k/(k+1)!。此外,a(n)=n^0-哈兰·J·兄弟2009年11月1日
a(n)也是n个顶点上的0-正则图的个数-杰森·金伯利2009年11月7日
1) 当序列被读取为规则三角形数组时,T(n,k)是(x^(n+1)-1)/(x-1)展开式中的k次幂系数。
2) 序列也可以被读取为一个长度为1的行的二项式数组,类似于二项式、三项式等系数的数组。在q项数组中,T(n,k)是((x^q-1)/(x-1))^n展开式中的k次幂系数,行n的和为q^n,长度为(q-1)*n+1。(结束)
从2Xn栅格的西北角到西南角的最大自空行走次数。
作为下三角数组,T是A133314号.将每个第n对角线乘以t^n得到M(t)=I/(I-t*S)=I+t*S+(t*S。。。其中S是轮班操作员A129184号,且T=M(1)。M(t)的逆矩阵是t的第一个子对角线乘以-t,其他子对角线则乘以零,因此A167374号是T的逆函数。乘以T^n/n!给出了带有逆exp(-t*S)的exp(t*S)-汤姆·科普兰2012年11月10日
考虑n>=1个互不相交的球面,每个球面都有表面积S。当且仅当球面S_j上存在点q时,将球面S_i上的点p定义为“公共点”,j!=i、 这样线段pq INTERSECT S_i={p}和pq INTER S_j={q};否则,p是“私有点”。完全由所有n个球体上的所有私有点组成的总表面积是a(n)*S=S(Zeitz中的“私有行星问题”)-里克·L·谢泼德2014年5月29日
a(n)也是由M(i,j)=二项式(i,j=0≤i,j<=n)定义的(n+1)X(n+1”)矩阵M的行列式,因为M是主对角线都为1的下三角矩阵-宋嘉宁2018年7月17日
a(n)也是对称n X n矩阵M的行列式,由M(i,j)=min(i,j)定义,对于1<=i,j<=n(参见Xavier Merlin参考)-伯纳德·肖特,2018年12月5日
a(n)也是对称n X n矩阵M的行列式,由M(i,j)=τ(gcd(i,j))定义为1≤i,j≤n(参见De Koninck&Mercier参考)-伯纳德·肖特2020年12月8日
|
|
参考文献
|
J.-M.De Koninck和A.Mercier,1001 Problèmes en Théorie Classique des Nombres,Probléme 692第90和297页,Ellipses,巴黎,2004年。
L.B.W.Jolley,系列总结,第二修订版,多佛(1961年)。
泽维尔·梅林(Xavier Merlin),《阿尔盖布雷·梅瑟迪克斯》(Méthodix Algèbre,Execice 1-a),第153页,《椭圆》,巴黎,1995年。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
S.Wolfram,《一种新的科学》,Wolfram Media,2002年;第55页。
Paul Zeitz,《数学问题解决的艺术和工艺》,The Great Courses,The Teaching Company,2010年(DVD和课程指南,第6讲:“图片、重播和观点”,第32-34页)。
|
|
链接
|
杰里米亚·巴茨、布鲁斯·迪尔登和乔尔·利亚姆斯,间隙平衡数的类别,arXiv:1810.07895[math.NT],2018年。
A.M.Hinz、S.Klavíar、U.Milutinović和C.Petr,河内塔——神话与数学,Birkhäuser 2013。参见第172页。图书网站
杰里·梅茨格和托马斯·理查兹,囚犯问题变体《整数序列杂志》,第18卷(2015年),第15.2.7条。
Michael Z.Spivey和Laura L.Steil,k二项式变换和Hankel变换《整数序列杂志》,第9卷(2006年),第06.1.1条。
|
|
配方奶粉
|
a(n)=1。
G.f.:1/(1-x)。
例如:exp(x)。
G.f.:产品{k>=0}(1+x^(2^k))-扎克·塞多夫2007年4月6日
a(p^e)=1的完全乘法。
被反对偶视为正方形数组,g.f.1/((1-x)(1-y)),例如f.总和T(n,m)x^n/n!y^m/m!=e^{x+y},例如f.总和T(n,m)x^ny^m/m!=e^y/(1-x)。视为三角形数组,g.f.1/((1-x)(1-xy)),例如f.总和T(n,m)x^ny^m/m!=e^{xy}/(1-x)-富兰克林·T·亚当斯-沃特斯2006年2月6日
a(n)=Sum_{l=1..n}(-1)^(l+1)*2*cos(Pi*l/(2*n+1))=1在n>=1中相同(对于n=0,从未定义的和中取0)。摘自乔利参考文献,(429)第80页。解释:考虑切比雪夫多项式S(2*n,x)的x=0和n个正零点之间的n段(参见A049310型). 然后,从以最大零结尾的线段开始(从右到左)的其他线段的长度之和为1-沃尔夫迪特·朗2016年9月1日
|
|
例子
|
1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))) =A001622号.
1/9 = 0.11111111111111...
不可被3整除的非负奇数的Modd 7:
A007310号: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, ...
模式3:1、1、1。。。
(结束)
|
|
MAPLE公司
|
seq(1,i=0..150);
|
|
数学
|
阵列[1&,50](*Joseph Biberstine(jrbibers(AT)indiana.edu),2006年12月26日*)
|
|
黄体脂酮素
|
(岩浆)[1:n in[0..100]];
(PARI){a(n)=1};
(哈斯克尔)
a000012=常数1
(Maxima)临时名单(1,n,1,30)/*马丁·埃特尔2012年11月7日*/
(Python)打印([1代表范围(90)内的n)]#迈克尔·布拉尼基2022年4月4日
|
|
交叉参考
|
囊性纤维变性。A000004号,A007395号,A010701号,A000027号,A027641号,A014410号,A211216型,A212393型,A060544号,A051801号,A104684号.
|
|
关键词
|
|
|
作者
|
|
|
状态
|
经核准的
|
|
|
|