显示找到的7个结果中的1-7个。
第页1
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 25, 26
Catalan自同构的特征变换:反映有根平面二叉树;Deutsch 1998年对Dyck路径的内卷化。
+10 168
0, 1, 3, 2, 8, 7, 6, 5, 4, 22, 21, 20, 18, 17, 19, 16, 15, 13, 12, 14, 11, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 60, 56, 53, 47, 44, 52, 43, 41, 36, 35, 40, 34, 32, 31, 51, 42, 39, 33, 30, 38, 29, 27, 26, 37, 28, 25, 24, 23, 196, 195, 194, 190, 189
链接
Emeric Deutsch公司,Dyck路的对合及其结果,离散数学。,204(1999),编号1-3,163-166。
Dana G.Korssjoen、Biyao Li、Stefan Steinerberger、Raghavendra Tripathi和Ruimin Zhang,用图论寻找实数序列的结构:一个问题列表,arXiv:2012.046252020年12月8日。
例子
0 0 0 0
\ / \ /
1 0 0 1
\ / \ /
0 1 1 0
\ / \ /
1 1
因此a(5)=7,a(7)=5。
MAPLE公司
ReflectBinTree:=n->ReflectBinTree2(n)/2;反射BinTree2:=n->(`if`((0=n),n,反射BinTReeAux(A030101型(n) );
ReflectBinTreeAux:=proc(n)局部a,b;a:=反射BinTree2(BinTree左分支(n));b:=反射BinTree2(BinTree右分支(n));返回((2^(A070939号(b)+A070939号(a) )+(b*(2)^(A070939号(a) )+a);结束;
NextSubBinTree:=proc(nn)局部n,z,c;n:=nn;c:=0;z:=0;而(c<1)doz:=2*z+(n模2);c:=c+(-1)^n;n:=地板(n/2);od;返回(z);结束;
BinTreeLeftBranch:=n->NextSubBinTree(楼层(n/2));
BinTreeRightBranch:=n->NextSubBinTree(楼层(n/(2^(1+A070939号(BinTreeLeftBranch(n)));
数学
A014486Q[0]=正确;A014486Q[n_]:=Catch[Fold[If[#<0,Throw[False],If[#2==0,#-1,#+1]]&,0,整数位数[n,2]]==0];tree[n_]:=块[{func,num=追加[InterDigits[n,2],0]},func:=如果[num[[1]==0,num=删除[num,1];0,num=删除[num,1];1[功能,功能]];功能];A057163L[n_]:=函数[x,第一位置[x,FromDigits[大多数@案例[树[#]/。1->反转@*1,0|1,全部,头->真],2]][[1]]-1&/@x][Select[Range[0,2^n],A014486Q]];A057163L[11](*郑焕敏2016年12月11日*)
黄体脂酮素
(作用于S表达式(即列表结构)的这种自同构的方案实现:)
扩展
与2006年12月15日实现的德国1998年内卷化等效,相应的条目由编辑安蒂·卡图恩2007年1月16日
0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 66, 121, 149, 67
链接
A.卡图恩,亚纯性(包括用于计算该序列的完整Scheme程序)
MAPLE公司
地图(CatalanRankGlobal,地图(RotateBottomBranchesR,A014486号));
RotateBottomBranchesR:=n->pars2binexp(rotateR(binexp2pars(n)));
rotateR:=a->反转(rotateL(反转(a)));
RotBBPermutationCycleCounts:=进程(upto_n)局部u,n,a,r,b;a:=[];对于从0到upto_n的n,做b:=[];u:=(二项式(2*n,n)/(n+1));对于从0到u-1的r,请执行b:=[op(b),1+CatalanRank(n,RotateBottomBranchesL(CatalanUnrank(n、r))];od;a:=[op(a),计数周期(b)];od;返回(a);结束;
黄体脂酮素
(Scheme函数在列表结构上实现此自同构,请参见A057502号旋转握手!和交换!:)(定义(Ror!s)(条件((对)(RotateHandshakesInv!s)
自同构RoblDownCar_et_SwapInv!引起的自然数置换!操作由编码的括号A014486号.
+10 7
0, 1, 3, 2, 7, 8, 4, 6, 5, 17, 18, 20, 21, 22, 9, 10, 14, 16, 19, 11, 12, 15, 13, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 23, 24, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 30, 31, 32, 39, 40, 43, 52, 33, 34, 35, 41, 36, 129, 130, 132, 133, 134
链接
A.卡图恩,亚纯性(包括用于计算该序列的完整Scheme程序)
黄体脂酮素
(在列表结构上实现此自同构的Scheme函数:)
(定义(robr!s)(let((ex-cdr(cdr s)))(set-cdr!s(caar s))(set-car!(car s)ex-cdr)(swap!(cars))
(定义(交换!s)(let((ex-car(car s)))(set-car!s(cdr s))(set-cdr!s ex-car)s))
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 17, 18, 16, 14, 15, 21, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 39, 40, 41, 58, 59, 56, 51, 52, 57, 53, 54, 55, 63, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71
链接
A.卡图恩,亚纯性(包括用于计算该序列的完整Scheme程序)
黄体脂酮素
(在列表结构上实现此自同构的Scheme函数:)
(定义(gma069775!s)(cond((配对)(gma072797!s)
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 34, 35, 33, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 40, 39, 41, 54, 55, 57, 58, 59, 53, 56, 51, 52, 61, 62, 63, 60, 64, 65, 66, 68, 67, 69, 73, 74
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 34, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 39, 40, 41, 54, 55, 57, 58, 59, 53, 56, 51, 52, 61, 62, 63, 60, 64, 65, 66, 67, 68, 69, 70, 71
搜索在0.007秒内完成
|