OEIS哀悼西蒙斯感谢西蒙斯基金会支持包括OEIS在内的许多科学分支的研究。
登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
搜索: a001142-编号:a001142
显示发现的57个结果中的1-10个。 第页12 4 5 6
    排序:相关性|参考文献||被改进的|创建     格式:长的|短的|数据
A249151型 最大的m以至于m!除以帕斯卡三角形第n行上元素的乘积:a(n)=A055881号(A001142号(n) )。 +20
20
1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2 (列表;图表;参考;;历史;文本;内部格式)
抵消
0,3
评论
A000225号给出了一的位置。
A006093号似乎给出了所有这样的k,即a(k)=k。
链接
安蒂·卡图恩,n=0..4096时的n,a(n)表
配方奶粉
a(n)=A055881号(A001142号(n) )。
例子
二项式系数。他们的产品最大的k!
A007318元 A001142号(n) 哪一个分开了
行0 1 1 1!
第1排1 1 1 1!
第2 1 2 1 2 2行!
第3 1 3 3 1 9 1行!
第4 1 4 6 4 1 96 4行!(96 = 4*24)
第5 1 5 10 10 5 1 2500 2行!(2500 = 1250*2)
第6 1 6 15 20 15 6 1 162000 6行!(162000 = 225*720)
黄体脂酮素
(PARI)
A249151型(n) ={my(uplim,padicvals,b);uplim=(n+3);padicvals=向量;
\\替代实施:
A001142号(n) =触头(k=1,n,k^((k+k)-1-n));
A055881号(n) ={my(i);i=2;while((0==(n%i)),n=n/i;i++);return(i-1);}
A249151型(n)=A055881号(A001142号(n) );
对于(n=04096,写入(“b249151.txt”,n,“”,A249151型(n) );
(方案)(定义(A249151型n)(A055881号(A001142号n) ))
交叉参考
一个以上A249150型.
囊性纤维变性。A249423型(数字k,使得a(k)=k+1)。
囊性纤维变性。A249429型(编号k,使得a(k)>k)。
囊性纤维变性。A249433型(编号k,使得a(k)<k)。
囊性纤维变性。249434英镑(数字k,使得a(k)>=k)。
囊性纤维变性。A249424型(将k编号为a(k)=(k-1)/2)。
囊性纤维变性。A249428型(以及相应的值,即数字n,以便A249151型(2n+1)=n)。
囊性纤维变性。A249425型(记录位置)。
囊性纤维变性。A249427型(记录数值)。
关键词
非n
作者
安蒂·卡图恩2014年10月25日
状态
经核准的
A187059号 2的最高幂指数除以帕斯卡三角形第n行元素的乘积(A001142号). +20
14
0, 0, 1, 0, 5, 2, 4, 0, 17, 10, 12, 4, 18, 8, 11, 0, 49, 34, 36, 20, 42, 24, 27, 8, 58, 36, 39, 16, 47, 22, 26, 0, 129, 98, 100, 68, 106, 72, 75, 40, 122, 84, 87, 48, 95, 54, 58, 16, 162, 116, 119, 72, 127, 78, 82, 32, 147, 94, 98, 44, 108, 52, 57, 0, 321, 258, 260, 196, 266, 200, 203, 136, 282, 212, 215, 144, 223, 150, 154, 80, 322, 244, 247, 168, 255, 174, 178, 96, 275, 190, 194, 108, 204, 116, 121, 32, 418, 324, 327, 232, 335 (列表;图表;参考;;历史;文本;内部格式)
抵消
0,5
评论
除以Product_{k=0..n}二项式(n,k)的2的最高幂的指数。这可以使用de Polignac的公式进行计算。
这是函数ord_2(Ḡ_n) 在Lagarias Mehta(2014)中进行了广泛研究,并绘制在图1.1中-安蒂·卡图恩2014年10月22日
参考文献
I.Niven,H.S.Zuckerman,H.L.Montgomery,《数字理论导论》,威利出版社,1991年,第182、183、187页(例34)。
链接
Antti Karttunen和Paul Tek,n=0..8191时的n,a(n)表(前4096个条款来自Karttunen)
J.Lagarias,二项式系数和Farey分数的乘积,在DIMACS会议上关于识别整数序列的挑战的演讲,2014年10月9日;第1部分第2部分.
杰弗里·拉加里亚斯(Jeffrey C.Lagarias)、哈什·梅塔(Harsh Mehta)、,二项式系数与未约化Farey分数的乘积,arXiv:1409.4145[math.NT],2014年。
配方奶粉
a(2^k-1)=0(19世纪);a(2^k)=(k-1)*2^k+1对于k>=1。(使用de Polignac。)
a(n)=和{i=0..n}A065040号(n,i)[其中三角表的项A065040号(m,k)给出2除以二项式系数的最大幂的指数A007318元(m,k)]。
a(n)=A007814号(A001142号(n) )-杰森·金伯利2011年11月2日
a(n)=A249152号(n)-A174605型(n) ●●●●。[第n超因子的第n超阶乘负指数中的2的指数。参见Lagarias&Mehta论文或Peter Luschny的公式A001142号.] -安蒂·卡图恩2014年10月25日
a(n)=2*A000788号(n)-A249154号(n) ●●●●-安蒂·卡图恩2014年11月2日
a(n)=和{i=1..n}(2*i-n-1)*v_2(i),其中v_2(i)=A007814号(i) 是2除以i的最高幂的指数-里杜安·乌德拉(Ridouane Oudra)2022年6月2日
例子
例如,如果n=4,2除以1*4*6*4*1的幂是5。
数学
a[n_]:=和[IntegerExponent[二项式[n,k],2],{k,0,n}];数组[a,100,0]
黄体脂酮素
(PARI)a(n)=总和(k=0,n,估值(二项式(n,k),2))
(PARI)
\\更快的版本,基于的代码A065040号通过查尔斯·格里特豪斯四世如果进一步减小,则公式a(n)=2*A000788号(n)-A249154号(n) :
A065040号(m,k)=(重量(k)+重量(m-k)-重量(m));
A187059号(n) =总和(k=0,n,A065040号(n,k));
对于(n=04095,写入(“b187059.txt”,n,“”,A187059号(n) );
\\安蒂·卡图恩2014年10月25日
(哈斯克尔)
a187059=a007814。a001142号--莱因哈德·祖姆凯勒2015年3月16日
交叉参考
三角表的行和A065040号.
数组的第1行A249421型.
囊性纤维变性。A000295号(a(2^k-2)),A000337号(a(2^k)),A005803号(a(2^k-3)),A036799号(a(2^k+1)),A109363号(a(2^k-4))。
关键词
非n容易的
作者
扩展
姓名澄清人安蒂·卡图恩2014年10月22日
状态
经核准的
A249343型 帕斯卡三角形第n行元素的乘积除以3的最高幂的指数(A001142号(n) )。 +20
9
0, 0, 0, 2, 1, 0, 4, 2, 0, 14, 10, 6, 13, 8, 3, 12, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 68, 55, 42, 58, 44, 30, 48, 33, 18, 73, 56, 39, 60, 42, 24, 47, 28, 9, 78, 57, 36, 62, 40, 18, 46, 23, 0, 136, 110, 84, 114, 87, 60, 92, 64, 36, 132, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0 (列表;图表;参考;;历史;文本;内部格式)
抵消
0,4
链接
安蒂·卡图恩,n=0..6560时的n,a(n)表
杰弗里·拉加里亚斯和哈什·梅塔,二项式系数与未约化Farey分数的乘积,arXiv:1409.4145[math.NT],2014年。
配方奶粉
a(n)=A007949号(A001142号(n) )。
a(n)=和{k=0..n}243759英镑(n,k)。
a(n)=和{i=1..n}(2*i-n-1)*v_3(i),其中=A007949号(i) 是3除以i的最高幂的指数-里杜安·乌德拉(Ridouane Oudra)2022年6月2日
黄体脂酮素
(PARI)分配(234567890);
A249343型(n) =总和(k=0,n,估值(二项式(n,k),3));
对于(n=6560,写入(“b249343.txt”,n,“”,A249343型(n) );
(方案)
(定义(A249343型n) (添加243759英镑(A000217号n)(A000096号n) ))
(定义(添加intfun lowlim uplim)(让sumloop
(哈斯克尔)
a249343=a007949。a001142号--莱因哈德·祖姆凯勒2015年3月16日
交叉参考
的行总和243759英镑.
数组的第2行A249421型.
囊性纤维变性。A001142号A007949号A187059号A249345号A249347号.
关键词
非n
作者
安蒂·卡图恩2014年10月28日
状态
经核准的
A249150型 二项式系数乘积的阶乘基表示中的尾随零点数:a(n)=A230403型(A001142号(n) )。 +20
7
0、0、1、0、3、1、5、0、1、3、9、6、11、5、3、0、15、1、17、3、5、9、21、10、3、11、1、5、27、24、29、0、9、15、5、35、35、17、11、39、39、5、41、9、22、21、45、18、5、3、15、11、51、1、9、34、17、27、57、46、59、29、62、0、11、9、65、15、21、48、69、40、71、35、3,17,9,11,77,79,1 (列表;图表;参考;;历史;文本;内部格式)
抵消
0,5
评论
a(n)=A249151型(n) -1。请参阅该序列的注释和图表。
链接
配方奶粉
a(n)=A230403型(A001142号(n) )。
黄体脂酮素
(方案)(定义(A249150型n)(A230403型(A001142号n) ))
交叉参考
小于1A249151型.
囊性纤维变性。A249423型(取值k,使a(k)=k)。
囊性纤维变性。A249425型(记录位置)。
囊性纤维变性。A249426型(记录数值)。
囊性纤维变性。A001142号A187059号A230403型.
关键词
非n
作者
安蒂·卡图恩2014年10月25日
状态
经核准的
A056077号 序列项索引nA001142号,乘积{k=0..n}二项式(n,k),可被所有素数<=n整除。 +20
5
1, 2, 4, 6, 10, 11, 12, 16, 18, 22, 23, 28, 29, 30, 35, 36, 39, 40, 42, 44, 46, 47, 52, 55, 58, 59, 60, 62, 66, 69, 70, 71, 72, 78, 79, 82, 83, 88, 89, 95, 96, 100, 102, 104, 106, 107, 108, 111, 112, 119, 125, 126, 130, 131, 134, 136, 138, 139, 143, 148, 149, 150, 153 (列表;图表;参考;;历史;文本;内部格式)
抵消
1,2
评论
a(n)+1要么是质数,要么是“叛变数”(A027854号).
链接
迈克尔·德弗利格,n=1..10000时的n,a(n)表
汉斯·蒙塔努斯和罗恩·韦斯特迪克,蜂窝自动化和二项式《绿蓝数学》(2022),第69页。
配方奶粉
设h(m)=积(素数除数(Product_{k=0..m}k^k/k!))。如果h(m-1)除以h(m),那么m就是这个序列#彼得·卢什尼2019年12月21日
例子
11被包括在内,因为乘积_{k=0..11}二项式(11,k)可被2、3、5、7和11整除。
MAPLE公司
isA056077:=程序(n)本地radh;radh:=proc(n)选项记忆;
mul(k,k=numtheory:-因子集(mul(k^k/因子(k),k=0..n))结束;
type(radh(n)/radh,n-1),integer)结束:#isA056077(0)=true。
选择(isA056077,[1..153])#彼得·卢什尼2019年12月21日
数学
使用[{s=Select[Range@154,Function[n,(n/Apply[Power,Last@#])>#[[-1,1]]&@FactorInteger[n]]},-1+并集[s,Prime@Range@PrimePi@Max@s]](*迈克尔·德弗利格,2017年9月23日*)
交叉参考
囊性纤维变性。A001142号A056606号A027854号A002110号.
关键词
容易的非n
作者
勒罗伊·奎特2000年7月26日
扩展
由扩展雷·钱德勒2008年11月17日
状态
经核准的
A109873号 a(n)=帕斯卡三角形第n行项的乘积(A001142号)除以n^k,其中n^k是n除以它的最大幂。 +20
1, 1, 1, 6, 4, 125, 225, 336140, 2458624, 324060912, 8930250000, 835597712998125, 9001015156742400, 6600661714966989472803, 68987440762943255933340961, 28036608657071518646200652343750, 377177413291384771899817984000000 (列表;图表;参考;;历史;文本;内部格式)
抵消
1,4
评论
如果p是素数,则a(p)=A001142号(p) /(p^(p-1)}。
链接
例子
a(5)=1*5*10*10*5*1/625=4。
MAPLE公司
A001142号:=进程(n)局部k;mul(k^(2*k-1-n),k=1..n);结束时间:A109873号:=proc(n)本地a;答:=A001142号(n) ;而mod n=0和a>1做a:=a/n;od;返回(a);结束:seq(A109873号(n) ,n=1..20)#R.J.马塔尔2007年8月15日
交叉参考
囊性纤维变性。A001142号A109874号.
关键词
非n
作者
阿马纳特·穆尔蒂2005年7月10日
扩展
更多术语来自R.J.马塔尔2007年8月15日
状态
经核准的
A109874号 最大指数e,其中n^e除以A001142号(n) ●●●●。 +20
1, 2, 2, 4, 4, 6, 5, 7, 8, 10, 9, 12, 11, 12, 12, 16, 14, 18, 16, 18, 20, 22, 19, 22, 24, 22, 23, 28, 26, 30, 25, 30, 32, 30, 36, 36, 36, 36, 40, 40, 36, 42, 40, 39, 44, 46, 40, 45, 44, 46, 48, 52, 45, 50, 49, 54, 56, 58, 54 (列表;图表;参考;;历史;文本;内部格式)
抵消
2,2
评论
如果n是素数,则a(n)=n-1。如果n是复合的,a(n)>=2。
猜想:(1)如果n是偶数且n=2^r*m,m是奇数且>1,则a(n)=n-r-1。(2) 如果n=2^r,则a(n)=n-3。(3) 如果n是奇数且是复合的,则a(n)=n-2。
a(n)是最高指数e,因此n^e除以Product_{k=0..n}二项式(n,k)-乔格·阿恩特2022年6月4日
链接
MAPLE公司
A001142号:=进程(n)局部k;mul(k^(2*k-1-n),k=1..n);结束时间:A109874号:=proc(n)局部a,k;答:=A001142号(n) ;k:=0;而mod n=0和a>1做a:=a/n;k:=k+1;od;回报(k);结束:seq(A109874号(n) ,n=2..60)#R.J.马塔尔2007年8月15日
数学
a[n_]:=整数指数[乘积[二项式[n,k],{k,0,n}],n];
表[a[n],{n,2,60}](*让-弗朗索瓦·奥尔科弗2024年4月2日*)
黄体脂酮素
(PARI)针对(n=2,60,print1)(估值(prod(k=0,n,二项式(n,k)),n),“,”)\\乔格·阿恩特2022年6月4日
交叉参考
囊性纤维变性。A001142号A109873号.
关键词
非n
作者
阿马纳特·穆尔蒂2005年7月10日
扩展
更正和扩展人R.J.马塔尔2007年8月15日
姓名更正人乔格·阿恩特2022年6月4日
状态
经核准的
A219268型 的对数导数A001142号,其中A001142号(n) =产品{k=1..n}k^k/k!。 +20
1, 3, 22, 347, 11986, 956334, 184142134, 87903876147, 105736320973732, 323943204887363938, 2547547949361933790328, 51735228018482706470521574, 2726127372514537039881847535054, 374214400937086673452020875815709240, 134262616041282033840675468757467513112522 (列表;图表;参考;;历史;文本;内部格式)
抵消
1,2
评论
A001142号(n) =超因子(n)/超因子(n)=A002109年(n)/A000178号(n) ●●●●。
链接
配方奶粉
a(n)~a^2*exp(n^2/2+n-1/12)/(n^(n/2-2/3)*(2*Pi)^((n+1)/2)),其中a=A074962号=1.2824271291…是Glaisher-Kinkelin常数-瓦茨拉夫·科特索维奇2015年7月10日
例子
L.g.f.:L(x)=x+3*x^2/2+22*x^3/3+347*x^4/4+11986*x^5/5+956334*x^6/6+。。。
哪里
exp(L(x))=1+x+2*x^2+9*x^3+96*x^4+2500*x^5+162000*x^6+26471025*x^7+11014635520*x^8++A001142号(n) *x^n+。。。
数学
nmax=15;Rest[CoefficientList[Series[Log[Sum[Product[j^j/j!,{j,1,k}]*x^k,{k,0,nmax}]],{x,0,nmax}],x]*范围[0,nmax]](*瓦茨拉夫·科特索维奇2015年7月10日*)
黄体脂酮素
(PARI){a(n)=n*polcoeff(log(总和(k=0,n+1,prod(j=0,k,j^j/j!)*x^k)+x*O(x^n)),n)}
对于(n=1,21,print1(a(n),“,”)
交叉参考
囊性纤维变性。A001142号A219266型A219268型.
关键词
非n
作者
保罗·D·汉纳2012年11月16日
状态
经核准的
A056609型 a(n)=拉德(n!)/拉德(A001142号(n) )其中rad(n)是n的无平方核,A007947号(n) ●●●●。 +20
1
1,1,2,1,3,1,2,3,5,1,1,7,5,2,1,3,1,5,7,11,1,1,5,13,3,7,1,1,1,2,11,17,7,1,19,13,1,7,1,11,1,23,1,7,5,17,13,1,3,11,1,19,29,1,1,31,1,2,13,11,1,17,23,1,1,37,5,19,11,13,1,1,3,41,1,1,17,43,29,11,1,1,13 (列表;图表;参考;;历史;文本;内部格式)
抵消
1、3
评论
前一个名称与观察到的数据不匹配吕克·卢梭,是:的平方方核的商A002944号(n) 和A001405号.
a(n)是素因式分解中不大于n的唯一素pA001142号(n) ,如果存在这样的素数;否则,a(n)为1-吕克·卢梭2019年1月1日
链接
卢克·卢梭,n=1..1000时的n,a(n)表(Labos Elemer的前90个术语)
配方奶粉
a(n)=A034386号(n)/A056606号(n) ●●●●-肖恩·欧文2022年4月24日
例子
发件人吕克·卢梭2019年1月2日:(开始)
在帕斯卡三角形中,
-行n=3(1 3 3 1)不包含素数因子为2的数字,因此a(3)=2;
-行n=4(1 4 6 4 1)对于所有p素数<=4,包含p的倍数,因此a(4)=1;
-行n=5(1 5 10 10 5 1)不包含素数因子为3的数字,因此a(5)=3;
等。
(结束)
数学
L[n_]:=表[二项式[n,k],{k,1,Floor[n/2]}]
c[n_]:=补码[Prime/@Range[PrimePi[n]],First/@FactorInteger[Times@@L[n]]]
a[n_]:=模[{x=c[n]},如果[x=={},1,第一个[x]]]
表[a[n],{n,1100}]
(*吕克·卢梭2019年1月1日*)
黄体脂酮素
(PARI)rad(n)=因子回复(因子(n)[,1])\\A007947号
b(n)=prod(m=1,n,二项式(n,m))\\A001142号
a(n)=拉德(n!)/拉德(b(n))\\米歇尔·马库斯2019年1月2日
交叉参考
关键词
非n
作者
拉博斯·埃利默2000年8月7日
扩展
定义和示例由更改吕克·卢梭2019年1月2日
状态
经核准的
A092593号 a(n)是最小的数字k>1,其中A001142号(k)/A002944号(k+1)^n是一个整数。 +20
1
2, 3, 9, 9, 15, 15, 38, 45, 45, 45, 61, 61, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 635, 635, 1545, 1545, 1545, 1545, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660 (列表;图表;参考;;历史;文本;内部格式)
抵消
1,1
评论
a(62)>12500-罗伯特·伊斯雷尔2019年1月24日
链接
例子
n=4,A001142号(9) =1*9*36**9*1 = 11759522374656,
A002944号(10) =lcm(1,2,…,10)/10=252和A001142号(9) = 2916*(252^4) = 11759522374656,
所以a(4)=9,最小的相关数。
MAPLE公司
A001142号:=proc(n)选项记住;进程名(n-1)*n^(n-1!结束进程:
A001142号(0):= 1:
A002944号:=proc(n)选项记住;ilcm(n,进程名(n-1)*(n-1”)/n结束进程:
A002944号(1):= 1:
f: =proc(n)选项记忆;局部k;
对于procname(n-1)中的k do
if类型(A001142号(k)/A002944号(k+1)^n,integer)然后返回k fi
结束进程:
f(1):=2:
地图(f,[1..61]美元)#罗伯特·伊斯雷尔2019年1月23日
数学
表[fla=1;Do[s1=Apply[Times,Table[二项式[n,j],{j,0,n}];s2=应用[LCM,表[二项式[n,j],{j,0,n}]];如果[IntegerQ[s1/(s2^k)]&&!等于[n,1]和等于[fla,1],打印[{n,k}];fla=0],{n,123}],{k,1,25}]
交叉参考
囊性纤维变性。A001142号A002944号A092593号.
关键词
非n
作者
拉博斯·埃利默2004年3月10日
扩展
更正和扩展人罗伯特·伊斯雷尔2019年1月23日
状态
经核准的
第页12 4 5 6

搜索在0.043秒内完成

查找|欢迎光临|维基|寄存器|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|转换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2024年5月28日22:13。包含372921个序列。(在oeis4上运行。)