|
|
A000225号 |
| a(n)=2^n-1。(有时称为梅森数字,尽管该名称通常用于A001348号.) (原名M2655 N1059)
|
|
1288
|
|
|
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,3
|
|
评论
|
这是q=2的高斯二项式系数[n,1]。
S_n上秩-1拟阵的个数。
此外,贝拿勒斯神庙问题的解决方案(移动次数最少),即三个菱形针,其中n个针盘按第一个针的大小递减,以相同的顺序放置在第三个针盘上,每次移动不超过一个针盘,也不将一个针盘放在较小的针盘的顶部Xavier Acloque,2003年10月18日
a(0)=0,a(1)=1;a(n)=最小值,使得a(n,a(m)==0(mod(n-m+1)),对于所有m-阿玛纳斯·穆尔西2003年10月23日
[1,1/2,1/3,…]=[1/1,3/2,7/3,…]的二项式变换;(2^n-1)/n,n=1,2,3-加里·亚当森2005年4月28日
二进制表示为111…1的数字。例如,第7项为(2^7)-1=127=1111111(以2为基数)-亚历山大·瓦恩伯格2005年6月8日
对于n>=2,a(n)是非2次幂的最小斐波那契n阶数-里克·L·谢泼德2007年11月19日
设P(A)是n元集A的幂集,则A(n+1)=P(A-罗斯·拉海耶2008年1月10日
2^n-1是深度n的帕斯卡三角形中元素的总和。-布莱恩·刘易斯(bsl04(AT)uark.edu),2008年2月26日
从偏移量1开始=Jacobsthal序列,A001045美元,(1,1,3,5,11,21,…)与(1,2,2,…)卷积-加里·亚当森2009年5月23日
如果n是偶数a(n)mod 3=0。这来自同余2^(2k)-1~2*2**2 - 1 ~ 4*4*...*4 - 1 ~ 1*1*...*1-1~0(mod 3)。(请注意,2*2*…*2有偶数个术语。)-华盛顿·邦菲姆,2009年10月31日
设A是n阶Hessenberg矩阵,定义为:A[1,j]=1,A[i,i]:=2,(i>1),A[i,i-1]=-1,否则A[i、j]=0。然后,对于n>=1,a(n)=det(a)-米兰扬吉奇2010年1月26日
这是G.Detlefs认为的序列家族[A,b:c,d:k]的序列A(0,1;1,2;2)=A(0,1;3,-2;0),并在下面给出的W.Lang链接中被视为A(A,b;c,d;k)-沃尔夫迪特·朗2010年10月18日
a(n)=S(n+1,2),第二类斯特林数。请参见下面的示例-丹尼斯·沃尔什2011年3月29日
帕斯卡三角形中a(n)行的条目都是奇数,而a(n。。。,奇怪。
将条形运算定义为对有符号排列的操作,该操作翻转每个条目的符号。那么a(n+1)是长度为2n的有符号置换的数量,它等于它们的反向补足的条,并且避免了模式集{(-2,-1),(-1,+2),(+2,+1)}。(参见Hardt和Troyka参考。)-贾斯汀·特洛伊卡2011年8月13日
a(n)是数字k,使得映射k->(3k+1)/2==1(mod 2)直到达到(3k+1/2==0(mod 2中)为止的迭代次数等于n(参见Collatz问题)-米歇尔·拉格诺2012年1月18日
对于整数a,b,用a<+>b表示,最小c>=a,使得Hd(a,c)=b(注意,一般来说,a<+>b与b<+>a不同)。则a(n+1)=a(n)<+>1。因此,这个序列是非负整数的汉明模拟-弗拉基米尔·舍维列夫2012年2月13日
皮萨诺周期长度:1、1、2、1、4、2、3、1、6、4、10、2、12、3、4、1、8、6、18、4。。。显然地A007733号. -R.J.马塔尔2012年8月10日
从n开始。每个n生成一个子列表{n-1,n-2,…,1}。每个子列表的每个元素也会生成一个子列表。取所有的总和。例如,3->{2,1}和2->{1},因此a(3)=3+2+1=7-乔恩·佩里2012年9月2日
这就是Lucas U(P=3,Q=2)序列-R.J.马塔尔2012年10月24日
梅森数>=7都是巴西数,以二为基数。参见链接中的命题1和5.2:“Les nombres brésiliens”-伯纳德·肖特2012年12月26日
a(n)是2的最高幂,因此2^a(n)除以(2^n)-伊万·伊纳基耶夫2013年8月17日
在计算机编程中,这些是唯一的无符号数字,例如k&(k+1)=0,其中&是按位AND运算符,数字用二进制表示-斯坦尼斯拉夫·西科拉2013年11月29日
青蛙问题中交换n只青蛙所需的最少移动次数(例如,参见下面的NRICH1246链接或Britton链接)-N.J.A.斯隆2014年1月4日
a(n)!==4(第5版);a(n)!==10(11年款);a(n)!==2、4、5、6(第7版)-卡米娜·苏里亚诺2014年4月6日
在0之后,由整数(1,2,3,4,…)的部分和组成的数组的反对角线和-卢西亚诺·安科拉2015年4月24日
a(n+1)等于长度为n的三元字的数量,避免了01,02-米兰Janjic2015年12月16日
当偏移量为0且另一个初始值为0时,第n项为0,0,1,3,7,15。。。是序数n的完全扩展von Neumann定义中所需的逗号数。例如,4:={0,1,2,3}:={{},{}},}}。此外,对于n>0,a(n)是序数n-1的完全展开的冯·诺依曼定义中所需的符号总数,其中总是使用单个符号(像往常一样)来表示空集,并且忽略空格。例如,a(5)=31,表示序号4的此类符号总数-里克·L·谢泼德2016年5月7日
除初始项外,二维细胞自动机第n个生长阶段的x轴的十进制表示,由“规则659”、“规则721”和“规则734”定义,基于用单个on细胞初始化的5细胞von Neumann邻域-罗伯特·普莱斯2017年3月14日
a(n),n>1,是具有n个元素的集上保序部分内射映射的幺半群的最大子半群的个数-詹姆斯米切尔和威尔夫·威尔逊2017年7月21日
给出了完备二部图K_{n-1,n-1}中独立顶点集和顶点覆盖的个数-埃里克·韦斯特因2017年9月21日
和{k=0..n}p^k是n X n矩阵M_(i,j)=二项式(i+j-1,j)*p+二项式的行列式(i+j-1,i),在这种情况下p=2(经验观察)-托尼·福斯特三世2019年5月11日
有理数r(n)=a(n+1)/2^(n+1/A000079号(n+1)也作为第n次迭代f^{[n]}(c;x)=2^(n+1 2)*24=21作为溶液。请参阅链接和参考。有关第二个问题(也涉及当前序列),请参阅中的注释A130330型. -沃尔夫迪特·朗2019年10月28日
a(n)是包含n的{1,2,..,n}的所有子集的最小元素的和。例如,a(3)=7;{1,2,3}中包含3的子集是{3}、{1,3},{2,3}、{1,2,3,最小元素之和为7-恩里克·纳瓦雷特2020年8月21日
a(n-1)是{1,2,..,n}的非空子集的数目,其中没有与集合大小相同的元素。例如,对于n=4,a(3)=7,并且子集是{2}、{3}、}4}、[1,3}和{1,4}-恩里克·纳瓦雷特2020年11月21日
也是完全图K_n中支配集的数目。
此外,当n>=3时,n-helm图中的最小支配集数。(结束)
猜想:除了a(2)=3之外,数字m使得2^(m+1)-2^j-2^k-1对所有0<=j<k<=m都是复合的-柴华武2021年9月8日
a(n)是n维tic-tac-toe中通过角单元的三行数-本·奥林2022年3月15日
当n==1(mod 4)时,a(n)==1(mod 30);
对于n==3(mod 4),a(n)==7(mod 120);
(a(n)-1)/30=(a(n+2)-7)/120,对于n奇数;
此外,高度为n-1的完美二叉树中的节点数,或:毕达哥拉斯树构造第n步后的正方形(或三角形)数:从线段开始。在每个步骤中,构造以最近的线段为底的正方形,以及以正方形的对边为斜边的等轴直角三角形(位于每个正方形的“顶部”)。在下一步中,这些三角形的腿将用作方块的底线段-M.F.哈斯勒,2024年3月11日
a(n)是n-Hanoi图的直径。等效地,a(n)是河内塔问题(即上述贝拿勒斯神庙问题)的任何两个状态之间的最大最小移动次数-艾伦·比克2024年8月9日
|
|
参考文献
|
P.Bachmann,Niedere Zahlentheorie(1902年,1910年),再版切尔西,纽约,1968年,第2卷,第75页。
Ralph P.Grimaldi,《离散和组合数学:应用导论》,第五版,Addison-Wesley,2004年,第134页。
约翰·彼得·赫贝尔(Johann Peter Hebel),《赫拉斯盖伯州第二大道的Gesammelte Werke》:简·克诺普夫(Jan Knopf),弗兰兹·利特曼(Franz Littmann)和汉斯格·施密特·伯格曼(Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern),沃尔斯泰·弗拉格。波段3,S.20-21,Loesung,S.36-37。另请参阅下面的链接。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
D.Wells,《企鹅奇趣数字词典》,“河内塔”,企鹅图书,1987年,第112-113页。
|
|
链接
|
M.Baake、F.Gahler和U.Grimm,替代系统及其因素示例,arXiv:1211.5466[math.DS],2012-2013年。
Michael Baake、Franz Gähler和Uwe Grimm,替代系统及其因素示例《整数序列杂志》,第16卷(2013年),#13.2.14。
乔纳森·比格利和劳拉·普德威尔,彩色瓷砖和排列《整数序列杂志》,第24卷(2021年),第21.10.4条。
J.伯恩海登,梅森内舍·扎伦,(德语文本)[Wayback Machine cached version]。
迈克尔·博德曼,鸡蛋滴数《数学杂志》,77(2004),368-372。
John Brillhart等人。,坎宁安项目[将b^n+-1,b=2,3,5,6,7,10,11,12分解为高幂][需要订阅]。
吉尔·布里顿,汉诺塔[视频文件,Wayback Machine缓存版本]。
吉尔·布里顿,青蛙拼图[Wayback Machine缓存版本]。
P.Catarino、H.Campos和P.Vasco,关于Mersenne序列《Annales Mathematicae et Informaticae》,46(2016),第37-53页。
W.M.B.Dukes,有限集上拟阵的个数,arXiv:math/0411557[math.CO],2004年。
David Eppstein,2048年的变革,arXiv:1804.07396[cs.DM],2018年。
G.Everest等人。,递归序列生成的素数阿默尔。数学。月刊,114(2007年第5期),417-431。
G.Everest、S.Stevens、D.Tamsett和T.Ward,二次多项式序列的本原因子,arXiv:math/0412079[math.NT],2004-2006。
G.Everest、A.J.van der Poorten、Y.Puri和T.Ward,整数序列和周期点,《整数序列杂志》,第5卷(2002年),第02.2.3条。
埃马纽埃尔·费朗,泰勒公式的变形《整数序列杂志》,第10卷(2007年),第07.1.7条。
A.Hardt和J.M.Troyka,受限对称有符号置换《纯粹数学与应用》,第23卷(2012年第3期),第179-217页。
A.Hardt和J.M.Troyka,幻灯片(与上述Hardt和Troyka参考相关)。
A.M.Hinz、S.Klavíar、U.Milutinović和C.Petr,河内塔——神话与数学,Birkhäuser 2013。见第11页。图书网站
爱德华·卢卡斯,简单周期数值函数理论斐波那契协会,1969年。文章“Théorie des Fonctions Numériques Simplement Périodiques,I”的英文翻译,Amer。数学杂志。,1 (1878), 184-240.
N.Moreira和R.Reis,有限集划分语言的密度《整数序列杂志》,第8卷(2005年),第05.2.8条。
西蒙·普劳夫,盖恩斯-奎尔克猜想的逼近《魁北克大学论文》,1992年;arXiv:0911.4975[math.NT],2009年。
Y.Puri和T.Ward,周期轨道的算法和增长,J.整数序列。,第4卷(2001年),第01.2.1号。
伯纳德·肖特,布列西利安裸鼠,转载自Quarture,编号76,avril-juin 2010,第30-38页,经Quarture编辑许可收录于此。
阿米莉亚·卡罗琳娜·斯巴维尼亚(Amelia Carolina Sparavigna),广义熵的合成运算在数字研究中的应用《国际科学杂志》(2019)第8卷,第4期,第87-92页。
阿米莉亚·卡罗琳娜·斯巴维尼亚(Amelia Carolina Sparavigna),一些群胚及其整数序列表示《国际科学杂志》(2019)第8卷第10期。
|
|
配方奶粉
|
G.f.:x/((1-2*x)*(1-x))。
例如:exp(2*x)-exp(x)。
例如,如果偏移量1:((exp(x)-1)^2)/2。
a(n)=和{k=0..n-1}2^k-保罗·巴里2003年5月26日
a(n)=a(n-1)+2*a(n-2)+2,a(0)=0,a(1)=1-保罗·巴里2003年6月6日
设b(n)=(-1)^(n-1)*a(n)。那么b(n)=和{i=1..n}i*i*斯特林2(n,i)*(-1)^(i-1)。b(n)的示例:(exp(x)-1)/exp(2x).-马里奥·卡塔拉尼(Mario.Catalani(AT)unito.it),2003年12月19日
a(n+1)=2*a(n)+1,a(0)=0。
a(n)=和{k=1..n}二项式(n,k)。
a(n)=n+和{i=0..n-1}a(i);a(0)=0-里克·L·谢泼德2004年8月4日
a(n+1)=(n+1)*Sum_{k=0..n}二项式(n,k)/(k+1)-保罗·巴里2004年8月6日
a(n+1)=Sum_{k=0..n}二项式(n+1,k+1)-保罗·巴里2004年8月23日
Stirling_2(n-k,2)从n=k+1开始-阿图尔·贾辛斯基2006年11月18日
a(n)=箍筋S2(n+1,2)-罗斯·拉海伊2008年1月10日
a(n)=J_n(2),其中J_n是第n个Jordan Totient函数:(A007434美元,是J_2)。
a(n)=Sum_{d|2}d^n*mu(2/d)。(结束)
a(n)=det(|s(i+2,j+1)|,1<=i,j<=n-1),其中s(n,k)是第一类斯特林数-米尔恰·梅卡,2013年4月6日
G.f.:Q(0),其中Q(k)=1-1/(4^k-2*x*16^k/(2*x*4^k-1/(1-1/(2*4^k-8*x*16 ^k/)));(续分数)-谢尔盖·N·格拉德科夫斯基2013年5月22日
例如:Q(0),其中Q(k)=1-1/(2^k-2*x*4^k/(2*x*2^k-(k+1)/Q(k+1)));(续分数)。
G.f.:Q(0),其中Q(k)=1-1/(2^k-2*x*4^k/(2*xx2^k-1/Q(k+1));(续分数)-谢尔盖·格拉德科夫斯基2013年5月23日
a(n)=和{t1+2*t2+…+n*tn=n}n*多项式(t1+t2+…+t_n,t1,t2,…,t_n)/(t1+t1+…+tn)-米尔恰·梅卡2013年12月6日
对于所有k>=3,二项式系数C(n,a(k))与其自身的卷积是C(n、a(k+1))-安东·扎哈罗夫2016年9月5日
a(n)=n+和{j=1..n-1}(n-j)*2^(j-1)。参见2017年6月14日的公式A000918号(n+1)和解释-沃尔夫迪特·朗,2017年6月14日
a(n)=和{k=0..n-1}和{i=0..n-1}C(k,i)-韦斯利·伊万·赫特2017年9月21日
a(n+m)=a(n)*a(m)+a(n)+a(m)-宇春记2018年7月27日
a(n+m)=a(n+1)*a(m)-2*a(n)*a-塔拉斯·戈伊2018年12月23日
a(n+1)是n X n矩阵M_(i,j)=二项式(i+j-1,j)*2+二项式-托尼·福斯特三世2019年5月11日
|
|
例子
|
对于n=3,a(3)=S(4,2)=7,第二类斯特林数,因为有7种方法可以将{a,b,c,d}划分为2个非空子集,即:,
{a} U型{b,c,d},{b} U型{a,c,d},{c} U型{a,b,d},{d} U型{a,b,c},{a,b}U{c,d},{a,c}U{b、d}和{a,d}U{b,c}-丹尼斯·沃尔什2011年3月29日
因为a(3)=7,所以有7个4的有符号置换,它们等于它们的反向补足的条,并避免{(-2,-1),(-1,+2),(+2,+1)}。这些是:
(+1,+2,-3,-4),
(+1,+3,-2,-4),
(+1,-3,+2,-4),
(+2,+4,-1,-3),
(+3,+4,-1,-2),
(-3,+1,-4,+2),
(-3,-4,+1,+2). (完)
G.f.=x+3*x^2+7*x^3+15*x^4+31*x^5+63*x^6+127*x^7+。。。
对于具有2个圆盘的河内塔问题,移动如下,因此a(2)=3。
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12 -艾伦·比克2024年8月7日
|
|
MAPLE公司
|
A000225号:=n->2^n-1;[seq(2^n-1,n=0..50)];
|
|
数学
|
a[n]:=2^n-1;表[a[n],{n,0,30}](*斯特凡·斯坦纳伯格2006年3月30日*)
阵列[2^#-1&,50,0](*Joseph Biberstine(jrbibers(AT)indiana.edu),2006年12月26日*)
线性递归[{3,-2},{1,3},20](*埃里克·韦斯特因2017年9月21日*)
系数列表[级数[1/(1-3 x+2 x ^2),{x,0,20}],x](*埃里克·韦斯特因2017年9月21日*)
|
|
黄体脂酮素
|
(哈斯克尔)
a000225=(减去1)。(2 ^)
a000225_list=迭代((+1)。(* 2)) 0
(PARI)连接(0,Vec(x/((1-2*x)*(1-x))+O(x^100))\\阿尔图·阿尔坎2015年10月28日
(SageMath)
定义isMersenne(n):返回n==总和([(1-b)<<s用于枚举((n+1).bits())中的(s,b)])#彼得·卢什尼2019年9月1日
(Python)
|
|
交叉参考
|
|
|
关键词
|
非n,容易的,核心,美好的
|
|
作者
|
|
|
扩展
|
|
|
状态
|
经核准的
|
|
|
|