登录
A000071号
a(n)=斐波那契(n)-1。
(原名M1056 N0397)
286
0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351, 24157816, 39088168, 63245985, 102334154
抵消
1,4
评论
a(n)是英国钟声艺术中从一个变化到下一个变化(n-1个钟声)的允许转换规则数。这也是对称群S_{n-1}中的对合数,它可以表示为来自{1,2,…,n-1}的连续数转置的乘积。例如,对于n=6,我们从(12)、(12)(34)、。看我1983年的数学。程序。外倾角。Phil Soc.论文。-亚瑟·T·怀特,致N.J.A.斯隆1986年12月18日
{1,2,…,n-1}的置换数p,使得max|p(i)-i|=1。例:a(4)=2,因为只有{1,2,3}的排列132和213满足给定条件。 -Emeric Deutsch公司,2003年6月4日[对于a(5)=4,我们有2143、1324、2134和1243。 -乔恩·佩里2013年9月14日]
001-长度为n-3的无效二进制字的数量。a(n)是{1,…,n-1}分成两个块的分区数,其中一个块中只能出现1或2个连续整数字符串,并且至少有一个2字符串。例如,a(6)=7,因为{1,2,3,4,5}的枚举分区是124/35,134/25,14/235,13/245,1245/3,145/23,125/34。 -奥古斯汀·穆纳吉2005年4月11日
只有一个斐波那契比特重表示是可能的,并且最大和最小斐波那奇比特重表示为可能的数字(A104326号A014417号)都是平等的。例如,a(12)=10101,因为8+3+1=12。 -凯西·蒙戈文,2006年3月19日
从(2)开始,“Recamán变换”(参见A005132号)斐波那契数列(A000045美元). -尼克·霍布森2007年3月1日
从非零项开始,a(n)给出三角形的行和A158950型. -加里·亚当森2009年3月31日
a(n+2)是高度为n的AVL树中的最小元素数。-Lennert Buytenhek(buytenh(AT)wantstofly.org),2010年5月31日
a(n)是n-1阶斐波那契树中的分支节点数。n阶斐波那契树(n>=2)是一个完整的二叉树,其左子树是n-1阶斐波纳契树,右子树是n-2阶斐波那契树;顺序为0和1的每个斐波那契树都定义为一个节点(参见Knuth参考,第417页)。 -Emeric Deutsch公司2010年6月14日
a(n+3)是长度为n的不同三股正编织线的数量(参见Burckel)。 -马克西姆·波里根2011年4月4日
a(n+1)是n的最大部分为2的组成数。 -乔格·阿恩特2013年5月21日
a(n+2)是高度n的大粒级DAG(有向无环图)的叶数。高度n的大粒级DAG是n=1的单个节点;对于n>1,ggpDAG(n-1)的每个叶都有两个子节点,其中相邻的两个新节点对合并为单个节点当且仅当它们具有不相交的祖父母和相同的greatgrandparent时。结果:a(n)=2*a(n-1)-a(n-3)。 -赫尔曼·斯坦姆·威尔勃朗2014年7月6日
2和7是这个序列中唯一的质数。 -埃曼纽尔·范蒂厄姆(Emmanuel Vantieghem)2014年10月1日
发件人罗素·杰·亨德尔,2015年3月15日:(开始)
我们可以建立杰拉尔德·麦卡维的猜想在公式部分中提到,但我们需要n>4。我们需要以下4个先决条件。
(1) a(n)=F(n)-1,其中{F(n)}_{n>=1}是斐波那契数A000045美元(2)(Binet形式)F(n)=(d^n-e^n)/sqrt(5),其中d=phi和e=1-phi,de=-1和d+e=1。因此,a(n)=(d(n)-e(n))/sqrt(5)-1。(3)证明floor(x)=y等价于证明x-y位于半开区间[0,1))包含子序列{s(t)}{t>=n+2}。利用这些先决条件,我们可以分析这个猜想。
使用先决条件(2)和(3),我们看到我们必须证明,对于所有n>4,d((d^(n-1)-e^(n_1))/sqrt(5)-1)-(d^n-e^n)/sqert(5)+1+c位于区间[0,1)。但de=-1,意味着de^=e^(n-2)(e^2+1)/sqrt(5)+e+c位于[0,1)中。显然,对于任何特定的n,当c=2*(1-d)和c=(1+d)*(1-d)时,e(n,c)都有极值(最大值,最小值)。因此,通过使用先决条件(4)来完成证明。它足以验证e(5,2*(1-德))=0,e(6,2*在[0,1)中。
(结束)
a(n)可以表示为具有n个顶点的路径上不同非空匹配的数目。(匹配是不相交边的集合。)-安德鲁·彭兰2017年2月14日
此外,对于n>3,正整数的字典序最早序列,使得{phi*a(n)}严格位于{phi*a(n-1)}和{phi*1(n-2)}之间。 -伊凡·内雷廷2017年3月23日
发件人埃里克·施密特2017年7月17日:(开始)
序列数(e(1)。..,e(n-2)),0<=e(i)<i,这样e(i!=e(j)<=e(k)。[Martinez和Savage,2.5]
序列数(e(1)。..,e(n-2)),0<=e(i)<i,这样就不存在e(i!=e(k)。[Martinez和Savage,2.5]
(结束)
Zeckendorf所在的数字(A014417号)和双Zeckendorf(A104326号)表示方式相同:数字1和0交替出现。 -阿米拉姆·埃尔达尔2019年11月1日
a(n+2)是最长数组的长度,其局部最大元素最多可以在n个显示中找到。请参阅亚历山大·库利科夫(Alexander S.Kulikov)的拼图链接。 -德米特里·卡梅内茨基,2020年8月8日
a(n+2)是不包含连续元素的{1,2,…,n}的非空子集的数目。例如,{1,2,3,4}的a(6)=7个子集是{1}、{2}、}3}、[4]、{1,3},{1,4}和{2,4}。 -穆格·奥卢科格鲁2021年3月21日
a(n+3)是偶数移位中长度n的允许模式数(也就是说,a(n=3)是长度n的二进制字的数目,其中任何两次出现1之间有偶数个0)。例如,a(7)=12,偶数移位中长度4的12个允许模式为0000、0001、0010、0011、0100、0110、0111、1000、1001、1100、1110、1111。 -佐兰·苏尼克2022年4月6日
猜想:对于k是正奇整数,序列{a(k^n):n>=1}是强可除序列;也就是说,对于n,m>=1,gcd(a(k^n),a(k*m))=a(k*gcd(n,m))。 -彼得·巴拉2022年12月5日
通常,具有签名(c,d)的二阶线性递归的和将是具有签名(c+1,d-c,-d)的三阶递归。 -加里·德特利夫斯2023年1月5日
a(n)是长度为n-2的二进制字符串的数量,其中最长的1次运行长度为1,对于n>=3。 -费利克斯·巴拉多2025年4月3日
参考文献
A.T.Benjamin和J.J.Quinn,《真正重要的证据:组合证明的艺术》,M.A.A.2003,同上。
GCHQ,GCHQ拼图书,企鹅出版社,2016年。参见第28页。
M.Kauers和P.Paule,《混凝土四面体》,Springer 2011年,第64页。
D.E.Knuth,《计算机编程的艺术》,第3卷,第2版,Addison-Wesley,Reading,马萨诸塞州,1998年,第417页。
J.Riordan,《组合分析导论》,威利出版社,1958年,第155页。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
尤卡斯(J.L.Yucas),《计算二进制林登单词的特殊集合》(Counting special set of binary Lyndon words),《阿尔斯·科姆》,31(1991),21-29。
链接
克里斯蒂安·鲍尔,n=1..500时的n,a(n)表
Isha Agarwal、Matvey Borodin、Aidan Duncan、Kaylee Ji、Tanya Khovanova、Shane Lee、Boyan Litchev、Anshul Rastogi、Garima Rastoki和Andrew Zhao,从机会不均等到硬币游戏舞蹈:彭尼游戏的变体,arXiv:2006.13002[math.HO],2020年。
里卡多·戈梅斯·阿扎,符号动力学尺度:模式、轨道和横向,arXiv:2009.02669[math.DS],2020年。
凯西·阿彻和诺埃尔·伯恩,组合中的模式回避和排列的幂,arXiv:2505.05218[math.CO],2025年。见第6-7页。
凯西·阿彻和亚伦·盖里,避免模式链的排列能力,arXiv:2312.14351[数学.CO],2023年。见第15页。
穆罕默德·阿扎里安,斐波那契数列的生成函数《密苏里数学科学杂志》,第2卷,第2期,1990年春季,第78-79页。Zentralblatt MATH,Zbl 1097.11516。
穆罕默德·阿扎里安,爬楼梯问题的推广II《密苏里数学科学杂志》,第16卷,第1期,2004年冬季,第12-17页。
J.-L.Baril和J.-M.Pallo,Tamari格中的Motzkin子网和Motzkin测地线, 2013.
埃里克·贝茨、布兰·莫里森、梅森·罗杰斯、阿里安娜·塞拉菲尼和阿纳夫·苏德,m步Fibonacci数部分和的一种新的组合解释,arXiv:2503.11055[math.CO],2025年。见第1-2页。
Andrew M.Baxter和Lara K.Pudwell,避免成对图案的递增序列, 2014.
谢尔盖·伯克尔,三股编织物的句法方法J.符号计算。31(2001),第5期,557-564。
亚历山大·伯斯坦(Alexander Burstein)和图菲克·曼苏尔(Toufik Mansour),计算某些子单词模式的出现次数,arXiv:math/0204320[math.CO],2002-2003年。
彼得·卡梅隆,由寡态置换群实现的序列,J.集成。序号。第3卷(2000年),编号00.1.5。
范忠和R.L.Graham,原始杂耍序列,美国数学。月刊115(3)(2008)185-194。
Ligia Loretta Cristea、Ivica Martinjak和Igor Urbiha,Hyperfibonacci序列与多主题数,arXiv:1606.06228[math.CO],2016年。
Michael Dairyko、Samantha Tyner、Lara Pudwell和Casey Wynn,二叉树中的非相似模式避免.电子。J.Combin.19(2012),第3期,论文22,21页,MR2967227。-来自N.J.A.斯隆2013年2月1日
Emeric Deutsch公司,问题Q915,数学。《杂志》,第74卷,第5期,2001年,第404页。
克里斯蒂安·埃尼斯(Christian Ennis)、威廉·霍兰德(William Holland)、奥马尔·穆贾瓦尔(Omer Mujawar,随机二进制序列中的单词I,arXiv:2107.01029[math.GM],2021。
Fumio Hazama,旋律空间的图形谱,离散数学。, 311 (2011), 2368-2383.见表2.1。
安井裕彦(Yasuichi Horibe),斐波那契树的熵视图《斐波纳契季刊》,第20期,第2期,1982年,第168-178页。[来自Emeric Deutsch公司2010年6月14日]
INRIA算法项目,组合结构百科全书384
多夫·贾登,递归序列1966年,耶路撒冷莱马特马提卡河。[注释扫描副本]见第96页。
Scott O.Jones和P.Mark Kayll,用等长Hamilton圈构造K_n的边标号,J.Comb。数学。梳子。公司。(2006)第57卷,第83-95页。见第92页。
塔马拉·科根(Tamara Kogan)、L.Sapir、A.Sapir和A.Sapier,解非线性方程的斐波那契迭代过程族,《应用数值数学》110(2016)148-158。
亚历山大·库利科夫,查找整数序列中的局部最大值,令人困惑的堆栈交换,2020。
雷内·拉格朗日,Quelques résultats dans la métrique des置换《高等师范学院科学年鉴》,巴黎,79(1962),199-241。
D.A.Lind,关于一类非线性二项式和,光纤。夸脱。, 3 (1965), 292-298.
刘瑞和赵凤珍,关于倒数超fibonacci数和超lucas数的和《整数序列杂志》,第15卷(2012年),第12.4.5号。-来自N.J.A.斯隆2012年10月5日
梅根·A·马丁内斯和卡拉·D·萨维奇,反转序列中的模式II:反转序列避免三重关系,arXiv:1609.08106[math.CO],2016年。
El-Mehdi Mehiri、Saad Mneimneh和Hacène Belbachir,斐波纳契、卢卡斯、佩尔和雅各布斯塔尔,arXiv:2502.11045[math.CO],2025年。见第12页。
奥古斯汀·穆纳吉,设置具有继任和离职的分区,IJMMS 2005:3(2005),451-463。
萨姆·诺斯希尔德,斯特恩硅藻序列0,1,1,2,1,3,2,3,1,4,。..阿默尔。数学。月份。第117(7)卷,第581-598页,2010年。
西蒙·普劳夫,盖恩斯-奎尔克猜想的逼近《魁北克大学论文》,1992年;arXiv:0911.4975[math.NT],2009年。
西蒙·普劳夫,1031生成函数,论文附录,蒙特利尔,1992
劳拉·普德威尔,树木中的模式避免,(演讲中的幻灯片,提到了许多序列),2012年。
劳拉·普德威尔,避免图案的上升序列2015年,演讲幻灯片。
斯泰西·瓦格纳,用一个交替下降枚举交替排列,《DePaul发现:第2卷:第2期》。1、第2条。
王新波和金奇伟,关于子序列和高阶斐波那契数的计数,arXiv:2405.17499[cs.IT],2024。见第2页。
亚瑟·T·怀特,响铃更改,数学。程序。剑桥菲洛斯。Soc.94(1983),第2期,203-215。
徐培军,正编织半群的增长,《纯粹与应用代数杂志》,1992年。
J.L.Yucas,计算二进制Lyndon单词的特殊集合《阿尔斯·库姆》,31(1991),21-29。(带注释的扫描副本)
赵建强,通过Rota-Baxter代数统一处理多重Zeta值的各种q类比的双重混洗和对偶关系,arXiv预印本arXiv:1412.8044[math.NT],2014。见表9第1行。
李娜正、刘瑞、赵凤珍,关于超fibonacci数和超lucas数的对数凹性《整数序列杂志》,第17卷(2014年),#14.1.4。
常系数线性递归的索引项,签名(2,0,-1)。
配方奶粉
a(n)=A000045美元(n) -1。
a(0)=-1,a(1)=0;此后a(n)=a(n-1)+a(n-2)+1。
a(n)=A101220标准(1,1,n-2),对于n>1。
通用格式:x^3/((1-x-x^2)*(1-x))。 -西蒙·普劳夫在他1992年的论文中,去掉了开头的0
a(n)=2*a(n-1)-a(n-3)。 -R.H.哈丁2011年4月2日
斐波那契数的部分和。 -沃尔夫迪特·朗
a(n)=-1+(a*B^n+C*D^n)/10,其中a,C=5+-3*sqrt(5),B,D=(1+-sqrt(五))/2。 -拉尔夫·斯蒂芬2003年3月2日
a(1)=0,a(2)=0、a(3)=1,然后a(n)=上限(phi*a(n-1)),其中phi是黄金比率(1+sqrt(5))/2。 -贝诺伊特·克洛伊特2003年5月6日
推测:对于所有c,2*(2-Phi)<=c<(2+Phi)*(2-Phi),对于n>4,我们有a(n)=地板(Phi*a(n-1)+c)。 -杰拉尔德·麦卡维2004年7月22日。如果n>3更改为n>4,则情况属实,请参阅“评论”部分中的证明。 -罗素·杰·亨德尔2015年3月15日
a(n)=和{k=0..floor((n-2)/2)}二项式(n-k-2,k+1)。 -保罗·巴里2004年9月23日
a(n+3)=和{k=0..floor(n/3)}二项式(n-2*k,k)*(-1)^k*2^(n-3*k)。 -保罗·巴里2004年10月20日
a(n+1)=和(二项式(n-r,r)),r=1,2。..即t字符串和k块的一般情况下t=2和k=2的情况:a(n+1,k,t)=总和(二项式(n-r*(t-1),r)*S2(n-rx(t-1,k-1)),r=1,2。.. -奥古斯汀·穆纳吉2005年4月11日
a(n)=和{k=0..n-2}k*Fibonacci(n-k-3)。 -罗斯·拉海耶2006年5月31日
a(n)=3X3矩阵[1,1,0;1,0,0;1,0,1]^(n-1)中的项(3,2)。 -阿洛伊斯·海因茨2008年7月24日
对于n>=4,a(n)=上限(φ*a(n-1)),其中φ是黄金比率。 -弗拉基米尔·舍维列夫2010年7月4日
无两个前导零的闭合形式g.f.:1/(1-2*x-x^3);((5+2*sqrt(5)))*((1+sqrt;闭合形式,带有两个前导0的g.f.:x^2/(1-2*x-x^3);((5+平方码(5))*(1+平方码。 -蒂姆·莫纳汉2011年7月10日
A000119号(a(n))=1。 -莱因哈德·祖姆凯勒2012年12月28日
a(n)=A228074号(n-1,2),对于n>2。 -莱因哈德·祖姆凯勒2013年8月15日
G.f.:Q(0)*x^2/2,其中Q(k)=1+1/(1-x*(4*k+2-x^2)/(x*(4*k+4-x^ 2)+1/Q(k+1));(续分数)。 -谢尔盖·格拉德科夫斯基2013年8月30日
A083368号(a(n+3))=n-莱因哈德·祖姆凯勒2014年8月10日
例如:1-exp(x)+2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5)。 -伊利亚·古特科夫斯基2016年6月15日
a(n)=A000032号(3+n)-1模块A000045美元(3+n)。 -马里奥·恩里奎兹,2017年4月1日
a(n)=和{i=0..n-2}斐波那契(i)。-乔治·达拉基什维利(mcnamara_gio(AT)yahoo.com),2005年4月2日道格·贝尔,2017年6月1日]
a(n+2)=求和{j=0..floor(n/2)}求和{k=0..j}二项式(n-2*j,k+1)*二项式(j,k)。 -托尼·福斯特三世2017年9月8日
发件人彼得·巴拉2021年11月12日:(开始)
a(4*n)=斐波那契(2*n+1)*Lucas(2*n-1)=A081006号(n) ;
a(4*n+1)=斐波那契(2*n)*Lucas(2*n+1=A081007号(n) ;
a(4*n+2)=斐波那契(2*n)*Lucas(2*n+2)=A081008号(n) ;
a(4*n+3)=斐波那契(2*n+2)*Lucas(2*n+1)=A081009型(n) ●●●●。(结束)
G.f.:x^3/((1-x-x^2)*(1-x))=Sum_{n>=0}(-1)^n*x^(n+3)*(Product_{k=1..n}(k-x)/Product_{k=1..n+2}(1-k*x))(伸缩级数)。 -彼得·巴拉2024年5月8日
产品{n>=4}(1+(-1)^n/a(n))=3*phi/4,其中phi是黄金比率(A001622号). -阿米拉姆·埃尔达尔2024年11月28日
MAPLE公司
A000071号:=程序(n)组合[fibonacci](n)-1;终末程序; #R.J.马塔尔2011年4月7日
a: =n->(矩阵([1,1,0],[1,0,0])^(n-1))[3,2];seq(a(n),n=1..50); #阿洛伊斯·海因茨2008年7月24日
数学
斐波那契[Range[40]]-1(*或*)线性递归[{2,0,-1},{0,0,1},40](*哈维·P·戴尔2013年8月23日*)
连接[{0},累加[Fibonacci[Range[0,39]]](*阿隆索·德尔·阿特,2017年10月22日,基于Giorgi Dalakishvili公式*)
黄体脂酮素
(PARI){a(n)=如果(n<1,0,fibonacci(n)-1)};
(岩浆)[斐波那契(n)-1:n in[1..60]]; //文森佐·利班迪2011年4月4日
(哈斯克尔)
a000071 n=a000071_列表!!n个
a000071_list=映射(减去1)$tail a000045_list
--莱因哈德·祖姆凯勒2013年5月23日
(SageMath)[fibonacci(n)-1代表范围(1,60)中的n]#G.C.格鲁贝尔2024年10月21日
关键词
非n,容易的,美好的,听到
作者
扩展
编辑人N.J.A.斯隆2011年4月4日
状态
经核准的