a(6)=4,从6=4+2=3+3=2+2开始。
G.f.=1+x^2+x^3+2*x^4+2*x^5+4*x^6+4*x^7+7*x^8+8*x^9+。..
不包含1的a(2)=1到a(9)=8分区如下。这些分区的Heinz数由下式给出A005408号.
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(42) (52) (53) (63)
(222) (322) (62) (72)
(332) (333)
(422) (432)
(2222) (522)
(3222)
以下是n-1的a(2)=1到a(9)=8个分区,其最小部分正好出现一次。这些分区的Heinz数由下式给出A247180型.
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (31) (32) (42) (43) (53)
(41) (51) (52) (62)
(221) (321) (61) (71)
(331) (332)
(421) (431)
(2221) (521)
(3221)
n+1的a(2)=1到a(9)=8分区,其中部分的数量本身就是一部分,如下所示。这些分区的Heinz数由下式给出A325761型.
(21) (22) (32) (42) (52) (62) (72) (82)
(311) (321) (322) (332) (333) (433)
(331) (431) (432) (532)
(4111) (4211) (531) (631)
(4221) (4222)
(4311) (4321)
(51111) (4411)
(52111)
以下是n的a(2)=1到a(8)=7分区,其最大部分至少出现两次。这些分区的Heinz数由下式给出A070003号.
(11) (111) (22) (221) (33) (331) (44)
(1111) (11111) (222) (2221) (332)
(2211) (22111) (2222)
(111111) (1111111) (3311)
(22211)
(221111)
(11111111)
具有n条边和n个顶点的a(2)=1到a(6)=4 2-正则多重图的非同构表示如下。
{12,12} {12,13,23} {12,12,34,34} {12,12,34,35,45} {12,12,34,34,56,56}
{12,13,24,34} {12,13,24,35,45} {12,12,34,35,46,56}
{12,13,23,45,46,56}
{12,13,24,35,46,56}
以下是n的a(2)=1到a(9)=8个分区,其中没有大于1的部分。这些分区的Heinz数由下式给出A325762型.
(11) (111) (211) (2111) (2211) (22111) (22211) (33111)
(1111) (11111) (3111) (31111) (32111) (222111)
(21111) (211111) (41111) (321111)
(111111) (1111111) (221111) (411111)
(311111) (2211111)
(2111111) (3111111)
(11111111) (21111111)
(111111111)
(结束)