登录
A329317飞机
反向前n项的Lyndon因式分解长度A000002号.
11
1, 2, 3, 2, 2, 3, 3, 4, 5, 4, 5, 6, 5, 3, 4, 4, 2, 3, 4, 3, 4, 3, 3, 4, 4, 5, 6, 5, 4, 5, 5, 2, 3, 3, 4, 5, 4, 5, 6, 5, 3, 4, 4, 5, 6, 5, 6, 5, 3, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 4, 4, 5, 6, 5, 6, 7, 6, 4, 5, 5, 3, 4, 4, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 6
抵消
1,2
评论
我们将两个或多个有限序列的Lyndon积定义为通过将序列混合在一起可以获得的词典编纂最大序列。例如,(231)与(213)的林登积是(232131),(221)与。Lyndon词是相对于Lyndon乘积为素数的有限序列。等价地,Lyndon单词是严格小于其所有循环旋转的有限序列。每个有限序列对Lyndon单词都有一个唯一的(无序)因子分解,如果这些因子按字典序递减排列,那么它们的串联等于它们的Lyndon乘积。例如,(1001)对Lyndon因式分解(001)(1)进行了排序。
例子
逆初始项的Lyndon分解序列A000002号开始:
1: (1)
2: (2)(1)
3: (2)(2)(1)
4: (122)(1)
5: (1122)(1)
6: (2)(1122)(1)
7: (12)(1122)(1)
8: (2)(12)(1122)(1)
9: (2)(2)(12)(1122)(1)
10: (122)(12)(1122)(1)
11: (2)(122)(12)(1122)(1)
12: (2)(2)(122)(12)(1122)(1)
13: (122)(122)(12)(1122)(1)
14: (112212212)(1122)(1)
15: (2)(112212212)(1122)(1)
16: (12)(112212212)(1122)(1)
17: (1121122122121122)(1)
18: (2)(1121122122121122)(1)
19: (2)(2)(1121122122121122)(1)
20: (122)(1121122122121122)(1)
例如,将A000002号是(1221221211221),使用Lyndon因式分解(122)(122)、(12)(1122)(1),因此a(13)=5。
数学
lynQ[q_]:=数组[Union[{q,RotateRight[q,#]}]=={q,旋转右[q,#]}&,长度[q]-1,1,And];
lynfac[q_]:=如果[Length[q]==0,{},函数[i,前缀[lynfac[Drop[q,i]],Take[q,i]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]];
kolagrow[q_]:=如果[Length[q]<2,取[{1,2},Length[C]+1],附加[q,切换[{q[[Length[Split[q]]],q[[2]],最后的[q]},{1,1,1},0,{1 2,2,2},1]]]
kol[n_Integer]:=嵌套[kolagrow,{1},n-1];
表[Length[lynfac[Reverse[kol[n]]],{n,100}]
关键词
非n
作者
古斯·怀斯曼2019年11月11日
状态
经核准的