登录
A211100型
n的二元展开Lyndon因式分解中的因子数。
48
1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 4, 3, 4, 4, 5, 2, 3, 2, 4, 3, 3, 2, 5, 3, 4, 3, 5, 4, 5, 5, 6, 2, 3, 2, 4, 2, 3, 2, 5, 3, 4, 2, 4, 3, 3, 2, 6, 3, 4, 3, 5, 4, 4, 3, 6, 4, 5, 4, 6, 5, 6, 6, 7, 2, 3, 2, 4, 2, 3, 2, 5, 3, 3, 2, 4, 2, 3, 2, 6, 3, 4, 3, 5, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 2, 7, 3, 4, 3, 5, 3, 4, 3, 6, 4, 5, 3, 5, 4, 4, 3, 7, 4, 5, 4, 6, 5, 5, 4, 7
抵消
0,3
评论
任何二进制单词都有一个独特的因子分解,作为非增量Lyndon单词的乘积(参见Lothaire)。a(n)=n的二元展开的Lyndon因式分解中的因子数。
当n=2^(k-1)+1时,第一次出现a(n)=k。
我们将两个或多个有限序列的Lyndon积定义为通过将序列混合在一起可以获得的词典编纂最大序列。例如,(231)与(213)的林登积是(232131),(221)与。Lyndon词是相对于Lyndon乘积为素数的有限序列。等价地,Lyndon单词是严格小于其所有循环旋转的有限序列。每个有限序列对Lyndon单词都有一个唯一的(无序)因子分解,如果这些因子按字典序递减排列,那么它们的串联等于它们的Lyndon乘积。 -古斯·怀斯曼2019年11月12日
参考文献
M.Lothaire,《单词组合学》,Addison-Wesley,Reading,MA,1983年。见定理5.1.5,第67页。
G.Melançon,使用Maple分解无限单词,MapleTech Journal,第4卷,第1期,1997年,第34-42页
链接
例子
n=25有二元展开式11001,它有三个因子的Lyndon因式分解(1)(1),所以a(25)=3。
下面是n的小值的Lyndon因式分解:
.0.
.1.
.1.0.
.1.1.
.1.0.0.
.1.01.
.1.1.0.
.1.1.1.
.1.0.0.0.
.1.001.
.1.01.0.
.1.011.
.1.1.0.0.
...
数学
lynQ[q_]:=数组[Union[{q,RotateRight[q,#]}]=={q,旋转右[q,#]}&,长度[q]-1,1,And];
lynfac[q_]:=如果[Length[q]==0,{},函数[i,前缀[lynfac[Drop[q,i]],Take[q,i]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]];
表[Length[lynfac[IntegerDigits[n,2]],{n,0,30}](*古斯·怀斯曼2019年11月12日*)
交叉参考
囊性纤维变性。A001037号(长度m的林登单词数);A102659号(清单)。
A211095型A211096型给出最小(或最右边)因子的信息。囊性纤维变性。A211097型,A211098型,A211099型.
行长度A329314型.
“共同”版本是A329312型.
2的位置为A329327飞机.
相反的版本是A329313型.
相反的版本是A329312型.
忽略第一个数字将给出A211097型.
关键词
非n
作者
N.J.A.斯隆2012年3月31日
状态
经核准的