|
|
A059966号 |
| a(n)=(1/n)*Sum_{d除以n}mu(n/d)*(2^d-1)。 |
|
143
|
|
|
1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
1,3
|
|
评论
|
在1,2,3等中有一个生成元的自由李代数的齐次部分的维数(分区数的李模拟)。
这个序列是划分序列的Lie模拟(它给出了每度一个生成器的齐次多项式的维数),或者类似的,是划分成不同(或奇数)的划分序列(它给出每维一个生成器外代数的齐次部分的维数)。
在从矩形末端反复切割一个正方形的过程中,矩形形状长度n的循环数。例如,长度为1的一个循环是金色矩形大卫·帕西诺(davepasino(AT)yahoo.com),2009年1月29日
在音乐中,在给定的节奏下,由具有相同模式的1和0(其中0表示没有节拍,1表示一个节拍)的节拍的连续重复产生的不同节奏的数量,其中每个节拍允许n个可能的具有相同特征的节拍,当在这两个条件下计数时:(i)测量的开始和结束时间未知或无关,(ii)通过使用少于n个可能拍的测量可以产生的相同节奏被排除在计数之外-理查德·福伯格2013年4月22日
理查德·福伯格(Richard R.Forberg)的评论不支持n=1,因为a(1)=1,但有两种可能的节奏:“0”和“1”-赫伯特·科西姆巴2016年10月24日
对于n=1,注释是成立的,因为节奏“0”可以通过使用0拍的度量来产生,因此注释的条件(ii)将其从a(1)=1中排除-特拉维斯斯科特2022年5月28日
a(n)也是带有和n的Lyndon合成数(正整数的非周期项链)-古斯·怀斯曼2017年12月19日
|
|
参考文献
|
C.Reutenauer,自由李代数,Clarendon出版社,牛津(1993)。
|
|
链接
|
S.V.Duzhin和D.V.Pasechnik,项链上的群组和沙堆群组《数学科学杂志》,2014年8月,第200卷,第6期,第690-697页。见第85页N.J.A.Sloane,2014年6月30日
Michael J.Mossinghoff和Timothy S.Trudgian,两个欧米茄的故事,arXiv:1906.02847[math.NT],2019年。
|
|
配方奶粉
|
G.f.:产品{n>0}(1-q^n)^a(n)=1-q^2-q^3-q^4-…=2-1/(1-q)。
G.f.:总和{k>=1}mu(k)*log((1-x^k)/(1-2*x^k-伊利亚·古特科夫斯基2019年5月19日
Dirichlet g.f.:f(s+1)/zeta(s+1”)-1,其中f(s)=和{n>=1}2^n/n^s-宋嘉宁2021年11月13日
|
|
例子
|
a(4)=3:三个元素[a,c],[a[a,b]]和d构成自由李代数中所有4次齐次元素的基础,生成元a为1次,b为2次,c为3次,d为4次。
林登的作品以总和为序:
(1),
(2),
(3),(12),
(4),(13),(112),
(5),(14),(23),(113),(122),(1112),
(6),(15),(24),(114),(132),(123),(1113),(1122),(11112),
(7),(16),(25),(115),(34),(142),(124),(1114),(133),(223),(1213),(1132),(1123), (11113),(1222),(11212),(11122),(111112). (结束)
|
|
数学
|
表[1/n应用[Plus,Map[(MoebiusMu[n/#](2^#-1))&,Divisors[n]],{n,20}]
(*第二个节目:*)
表[(1/n)除数总和[n,MoebiusMu[n/#](2^#-1)&],{n,35}](*迈克尔·德弗利格2019年7月22日*)
|
|
黄体脂酮素
|
(哈斯克尔)
a059966 n=总和(地图(\x->a008683(n`div`x)*a000225 x)
[d|d<-[1..n],mod n d==0])`div`n
(Python)
从sympy import mobius,除数
定义A059966号(n) :返回除数(n,生成器=True)中d的和(mobius(n//d)*(2**d-1))//n#柴华武2022年2月3日
|
|
交叉参考
|
囊性纤维变性。A000225号,A000740号,A008683号,A008965号,A011782号,A060223号,A185700个,A228369号,A269134号 A281013型,A296302型,A296373型.
|
|
关键词
|
非n,容易的,美好的
|
|
作者
|
|
|
扩展
|
描述由Axel Kleinschmidt更正,2002年9月15日
|
|
状态
|
经核准的
|
|
|
|