登录

年度呼吁:请向OEIS基金会捐款支持OEIS的持续开发和维护。现在是我们的第61年,我们有超过378000个序列,我们已经被引用了11000次(通常说“多亏了OEIS才被发现”)。

A106856号
形式为x^2+xy+2y^2的素数,其中x和y为非负。
575
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
抵消
1,1
评论
判别=-7。二元二次型ax^2+bxy+cy^2具有判别式d=b^2-4ac。
考虑由-100<d<0,abs(b)<=a<=c和gcd(a,b,c)=1的形式产生的素数序列。当b不为零时,有两种情况需要考虑:(1)非负x和y,以及(2)x和y任意整数。这些限制产生203个素数序列,这些素数序列由下面的判别式组织。
Mathematica函数QuadPrimes2有助于找到满足a>0、c>0和判别式d<0的任何a、b和c的正定二次型ax^2+bxy+cy^2表示的小于“lim”的素数。它通过检查椭圆ax^2+bxy+cy^2<=lim中的所有x>=0和y>=0来实现这一点。为了找出由正负x和y生成的素数,计算QuadPrimes2[a,b,c,lim]和QuadPrims2[a、-b、c、lim]的并集-T.D.诺伊2009年9月1日
有关其他程序,请参阅“二进制二次型和OEIS”链接。
参考文献
大卫·A·考克斯,《x^2+ny^2形式的素数》,威利出版社,1989年。
L.E.Dickson,《数字理论史》,第3卷,切尔西,1923年。
链接
扎克·塞多夫和N.J.A.斯隆,n=1..10000时的n,a(n)表(扎克·塞多夫发现了前1225个术语)
N.J.A.Sloane等人。,二元二次型与OEIS(相关序列、程序、参考的索引)
数学
四元数2[a_,b_,c_,lmt_]:=模[{p,d,lst={},xMax,yMax},d=b^2-4a*c;如果[a>0&c>0&&d<0,xMax=Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])];Do[如果[4c*lmt+d*x^2>=0,yMax=((-b)*x+Sqrt[4c*1mt+d*x^2])/(2c),yMax=0];做[p=a*x^2+b*x*y+c*y^2;如果[PrimeQ[p]&&p<=lmt&&!成员Q[lst,p],附加到[lst、p]],{y,0,yMax}],{x,0,xMax}];排序[lst]];
四元素数[1,1,2,1000]
(这是旧的、不正确的程序QuadPrimes的更正版本-N.J.A.斯隆2014年6月15日)
最大值=1000;表[yy={y,1,楼层[Sqrt[8 max-7 x ^2]/4-x/4]};表[x^2+x y+2 y^2,yy//评估],{x,0,楼层[Sqrt[max]]}]//展平//并集//选择[#,PrimeQ]&(*Jean-François Alcover公司2018年10月4日*)
黄体脂酮素
(PARI)列表(lim)=我的(q=Qfb(1,1,2),v=列表([2]));对于素数(p=2,lim,if(vecmin(qfbsolve(q,p))>0,listput(v,p);车辆(v)\\查尔斯·格里特豪斯四世2016年8月5日
交叉参考
-3到-100范围内的判别词:A007645号(d=-3),A002313号(d=-4),A045373号,A106856号(d=-7),A033203号(d=-8),A056874号,106857英镑(d=-11),A002476号(d=-12),A033212号,A106858号-A106861号(d=-15),A002144号,A002313号(d=-16),A106862号-106863年(d=-19),A033205号,106864英镑-A106865号(d=-20),A106866号-A106869号(d=-23),A033199号,A084865型(d=-24),A002476号,A106870号(d=-27),A033207号(d=-28),A033221号,A106871号-A106874号(d=-31),A007519号,A007520号,A106875号-A106876号(d=-32),A106877号-A106881号(d=-35),A040117号,A068228号,106882英镑(d=-36),A033227号,A106883号-A106888号(d=-39),A033201型,A106889号(d=-40),A106890号-A106891号(d=-43),A033209号,A106282号,106892英镑-A106893号(d=-44),A033232号,A106894号-A106900型(d=-47),A068229号(d=-48),A106901号-A106904号(d=-51),A033210号,A106905号-A106906号(d=-52),A033235号,A106907号-A106913号(d=-55),A033211号,A106914号-A106917号(d=-56),A106918号-电话:106922(d=-59),A033212号,106859英镑(d=-60),A106923号-A106930号(d=-63),A007521号,A106931号(d=-64),A106932号-A106933号(d=-67),A033213号,A106934号-A106938号(d=-68),A033246号,A106939号-A106948号(d=-71),A106949号-A106950号(d=-72),A033212号,A106951号-A106952号(d=-75),A033214号,A106953号-A106955号(d=-76),A033251号,A106956号-A106962号(d=-79),A047650号,A106963号-A106965号(d=-80),A106966号-A106970号(d=-83),A033215号,A102271号,A102273号,1906971年-A106974号(d=-84),A033256号,A106975号-A106983号(d=-87),A033216号,A106984号(d=-88),A106985号-A106989号(d=-91),A033217号(d=-92),A033206号,A106990号-A107001号(d=-95),A107002号-A107008号(d=-96),A107009号-A107013标准(d=-99)。
其他二次型集合:A139643号,A139827号.
有关给出由二元二次型表示的数字和/或素数的序列的更全面列表,请参阅“二元二次型和OEIS”链接。
另请参阅A242660型.
关键词
非n,容易的
作者
T.D.诺伊,2005年5月9日,2008年4月28日
扩展
删除了旧的Mathematica程序-T.D.诺伊2009年9月9日
已编辑(指出QuadPrimes中的错误,添加了新版本的程序,检查并扩展了b文件)-N.J.A.斯隆2014年6月6日
状态
经核准的