登录
OEIS由OEIS基金会的许多慷慨捐赠者

 

标志
提示
(来自的问候整数序列在线百科全书!)
A002145号 形式为4*k+3的素数。
(原名M2624 N1039)
331
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571 (列表图表参考文献历史文本内部格式)
抵消
1,1
评论
或者,奇数素数p,使得-1不是平方模p,即勒让德符号(-1/p)=-1。[LeVeque I,第66页]-N.J.A.斯隆,2008年6月28日
不是两个平方和的素数,请参阅中的注释A022544号. -阿图尔·贾辛斯基2006年11月15日
自然素数也是高斯素数。(把这个序列称为“高斯素数”是一个常见的错误。)
字段Q中的惰性有理素数(sqrt(-1))-N.J.A.斯隆2017年12月25日
对n进行编号,使第(2n)个分圆多项式系数的乘积等于-1-贝诺伊特·克洛伊特2002年10月22日
对于p和q都属于序列,根据高斯互易定律,恰好x^2=p(mod q),x^2=q(mod p)的一个同余是可解的-Lekraj Beedassy公司2003年7月17日
素数p除以L((p-1)/2)或L((p+1)/2),其中L(n)=A000032元(n) 卢卡斯数字。联盟A122869号A122870型. -亚历山大·阿达姆楚克,2006年9月16日
也可以用奇数素数p除(p-1)!!+1) 或(p-2)!!+1). -亚历山大·阿达姆楚克2006年11月30日
除(p-1)!!-的奇素数p1) 或(p-2)!!-1). -亚历山大·阿达姆楚克2007年4月18日
这个序列是负基本判别式绝对值集合的适当子集(A003657号)-保罗·穆尔贾迪2008年3月29日
Bernard Frénicle de Bessy发现这样的素数不可能是毕达哥拉斯三角形的斜边,而不是4*n+1形式的素数(参见A002144号). - 之后保罗·柯茨2008年9月10日
A079261号(a(n))=1;的补语A145395号. -莱因哈德·祖姆凯勒2008年10月12日
的后续A007970美元. -莱因哈德·祖姆凯勒2011年6月18日
A151763号(a(n))=-1。
素数p使得p XOR 2=p-2。布拉德·克拉克,2011年10月25日(误导,因为这是一个超级序列的公式A004767号. -R.J.马塔尔2014年7月28日)
似乎每个术语A004767号是该素数子序列中两项的平均值;囊性纤维变性。A245203型. -M.F.哈斯勒2014年7月13日
数字n>2使得((n-2)!!)^2==1(型号n)-托马斯·奥多夫斯基2016年7月24日
奇数n>1,这样((n-1)!!)^2==1(型号n)-托马斯·奥多夫斯基2016年7月25日
素数p使得(p-2)!!==(p-3)!!(修订版)-托马斯·奥多夫斯基2016年7月28日
关于4k+1和4k+3形式素数相对数的讨论,请参阅Granville和Martin编辑,2017年5月1日
有时因其与A016105年和Blum Blum Shub生成器-查尔斯·格里特豪斯四世,2018年6月14日
猜想:n>4的a(n)可以写成4k+1形式的3个素数之和,这意味着4k+3>=23形式的素数可以分解成6个非零平方和-托马斯·谢伊尔2023年2月9日
参考文献
M.Abramowitz和I.A.Stegun编辑,《数学函数手册》,国家标准应用数学局。第55辑,1964年(以及各种再版),第870页。
G.H.Hardy和E.M.Wright,《数字理论导论》,第5版,牛津大学出版社,1979年,第219页,第252页。
W.J.LeVeque,《数论专题》。Addison-Wesley,雷丁,马萨诸塞州,2卷。,1956年,第1卷,第66页。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
链接
扎克·塞多夫,n=1..10000时的n,a(n)表(T.D.Noe的前1000个术语)
M.Abramowitz和I.A.Stegun编辑。,数学函数手册,国家标准局,应用数学。系列55,第十次印刷,1972年[替代扫描副本]。
D.阿尔卑斯山,高斯素数
Lenore Blum、Manuel Blum和Mike Shub,一种简单的不可预知伪随机数生成器《SIAM计算机杂志》15:2(1986年5月1日),第364-383页。
A.Granville和G.Martin,素数竞赛,arXiv:math/0408319[math.NT],2004年。
欧内斯特·希布斯,素数的分量相互作用,《国会科技大学博士论文》(2022年),见第33页。
卢卡斯·拉卡萨(Lucas Lacasa)、巴托洛梅·卢克(Bartolome Luque)、伊格纳西奥·戈梅斯(Ignacio Gómez)和奥克塔维奥·米拉蒙特斯(Octavio Miramontes),关于一些素数序列的动力学方法,熵20.2(2018):131,另见arXiv:1802.08349[math.NT],2018。
E.T.Ordman,负素数判别式的类数表,存放在数学的未发布数学表文件中。公司。[带注释的扫描部分副本]
H.J.Smith,高斯素数
I.斯图尔特,伟大的数学问题, 2013.
埃里克·魏斯坦的数学世界,高斯素数
埃里克·魏斯坦的数学世界,高斯整数
Wolfram研究公司,高斯互惠定律
配方奶粉
从中删除A000040型中的术语A002313号
的交点A000040型A004767型. -阿隆索·德尔·阿特2014年4月22日
发件人瓦茨拉夫·科特索维奇2020年4月30日:(开始)
产品{k>=1}(1-1/a(k)^2)=A243379号
产品{k>=1}(1+1/a(k)^2)=A243381型
产品{k>=1}(1-1/a(k)^3)=A334427飞机
产品{k>=1}(1+1/a(k)^3)=A334426飞机
产品_{k>=1}(1-1/a(k)^4)=A334448飞机
产品{k>=1}(1+1/a(k)^4)=A334447飞机
产品{k>=1}(1-1/a(k)^5)=A334452型
产品{k>=1}(1+1/a(k)^5)=A334451型.(结束)
发件人瓦茨拉夫·科特索维奇2020年5月5日:(开始)
产品{k>=1}(1+1/a(k))/(1+1/A002144号(k) )=Pi/(4*A064533号^2) =1.3447728438248695625516649942427635670667319092323632111110962。。。
产品{k>=1}(1-1/a(k))/(1-1/A002144号(k) )=Pi/(8*A064533号^2) =0.672386421912434781275832497121381783533365954616181605555481…(结束)
求和{k>=1}1/a(k)^s=(1/2)*求和{n>=1奇数}莫比乌斯(n)*log(2*(2^(n*s)-1)*(n*s-1)!*zeta(n*s)/(Pi^(n*s)*abs(EulerE(n*s-1)))/n,s>=3奇数-迪米特里斯·瓦利亚纳托斯2020年5月20日
MAPLE公司
A002145号:=进程(n)
选项记忆;
如果n=1,则
三;
其他的
a:=下一素数(procname(n-1));
而模式4<>3
a:=下一素数(a);
结束do;
返回a;
结束条件:;
结束进程:
序列(A002145号(n) ,n=1..20)#R.J.马塔尔2011年12月8日
数学
选择[4范围[150]-1,PrimeQ](*阿隆索·德尔·阿特2013年12月19日*)
选择[Prime@Range[2,110],Length@Powers Representations[#^2,2,2]==1&](*或*)
选择[Prime@Range[2,110],JacobiSymbol[-1,#]==-1&](*罗伯特·威尔逊v2014年5月11日*)
黄体脂酮素
(PARI)表示质数(p=2,1e3,if(p%4==3,print1(p“,”))\\查尔斯·格里特豪斯四世,2011年6月10日
(哈斯克尔)
a002145 n=a002145_列表!!(n-1)
a002145_list=过滤器((==1)。a010051)[3,7..]
--莱因哈德·祖姆凯勒,2015年8月2日,2011年9月23日
(岩浆)[0..142]|IsPrime(4*n+3)]中的[4*n=3:n//阿尔卡迪乌斯·韦索洛夫斯基2013年11月15日
(鼠尾草)
定义A002145号_列表(n):如果p%4==3,则返回[p代表prime_range(1,n+1)中的p]#彼得·卢什尼2014年7月29日
交叉参考
囊性纤维变性。A000408号,A005098号,A095278号,A016754号
除初始期限外,与A045326号
囊性纤维变性。A016105号
囊性纤维变性。A004614号(乘法闭包)。
关键词
非n,容易的
作者
扩展
更多术语来自詹姆斯·塞勒斯2000年4月21日
状态
经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。

上次修改时间:美国东部标准时间2024年2月24日01:04。包含370288个序列。(在oeis4上运行。)