|
|
|
|
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
1,3
|
|
评论
|
n的二进制索引是1在其反向二进制展开中的任何位置。我们定义了一个BII-数为n的集系统,它是通过取n的每个二进制索引的二进制索引来获得的。每个有限非空集的有限集都有不同的BII-号。例如,18具有反向二进制展开(0,1,0,0,1),并且由于2和5的二进制索引分别为{2}和{1,3},所以{{2}、{1,3{}的BII数为18。
集合系统的元素有时称为边。在反链中,没有边是任何其他边的子集或超集。超森林是非空集的反链,其连接的组件是超树,这意味着它们具有密度-1,其中密度是边的大小之和减去边的数量减去顶点的数量。
|
|
链接
|
|
|
例子
|
所有超森林及其BII编号的序列开始于:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
130: {{2},{4}}
131: {{1},{2},{4}}
132: {{1,2},{4}}
136: {{3},{4}}
137: {{1},{3},{4}}
|
|
交叉参考
|
囊性纤维变性。A000120号,A030019型,A035053号,A048143号,A048793号,A052888号,A070939号,A134954号,A275307型,A326031型,A326702型,A326753型.
|
|
关键词
|
非n
|
|
作者
|
|
|
状态
|
经核准的
|
|
|
|