登录
A003319号
[1..n]的连接排列数(对于0<j<n,不固定[1..j]的排列数)。也称为不可分解置换或不可约置换。
(原名M2948)
112
1, 1, 1, 3, 13, 71, 461, 3447, 29093, 273343, 2829325, 31998903, 392743957, 5201061455, 73943424413, 1123596277863, 18176728317413, 311951144828863, 5661698774848621, 108355864447215063, 2181096921557783605, 46066653228356851631, 1018705098450570562877
抵消
0,4
评论
还有Aguiar和Sottile介绍的没有全局下降的排列数[推论6.3、6.4和备注6.5]。
还研究了Malvenuto-Reutenauer-Hopf置换代数的本原元空间的齐次分量的维数。阿奎尔和索蒂莱的著作【推论6.3】以及杜尚、希弗特和蒂本的著作【第3.3节】都以这种形式阐述了普瓦里埃和鲁特诺的这一结果【定理2.1】。
与秩为2的自由群中索引n-1的子群数有关(即任何2-生成元群中索引n-1的最大子群数)。参见斯坦利的枚举组合数学第二卷中的问题5.13(b)。
也是三角形的左边框A144107号,行总和=n-加里·亚当森2008年9月11日
汉克尔变换是A059332号.充气序列的Hankel变换为A137704号(n+1)-保罗·巴里2008年10月7日
对于每一个n,a(n+1)也是区间0..无穷大上概率密度函数rho(x)=exp(x)/(Ei(1,-x)*(Ei,1-x)+2*I*Pi)的n阶矩,Ei是指数积分函数-格鲁·罗兰2009年1月16日
此外(显然),a(n+1)是在任何属的表面上具有n个省道的根超映射的数量(参见Walsh 2012)-N.J.A.斯隆,2012年8月1日
也是重复序列A233824型(对于n>0)在Panaitopol的pi(x)公式中,素数<=x-乔纳森·桑多2013年12月19日
还有从每个内部顶点到该顶点后代的带有箭头的移动节点数(循环根树)-布拉德·琼斯,2014年9月12日
截至符号,A型碎片交点阶的Möbius数,参见阅读参考文献中的定理1.3-F.查波顿2015年4月29日
此外,a(n)是大小为n的完全非二义树的不同叶矩阵的数目-丹尼尔·陈2022年10月23日
参考文献
Miklos Bona,编辑,《枚举组合数学手册》,CRC出版社,2015年,第25页,例20。
E.W.Bowen,致N.J.A.Sloane的信,1976年8月27日。
L.Comtet,《高级组合数学》,Reidel,1974年,第84页(#25)、262页(#14)和295页(#16)。
P.de la Harpe,《几何群论专题》,芝加哥大学出版社,2000年,第23页,N_{N,2}。
I.M.Gessel和R.P.Stanley,代数枚举,《组合数学手册》第2卷第21章,R.L.Graham等人编辑,麻省理工学院出版社,1995年。
M.Kauers和P.Paule,《混凝土四面体》,施普林格出版社2011年,第22页。
H.P.Robinson,致N.J.A.Sloane的信,1973年11月19日。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
R.P.Stanley,枚举组合数学,剑桥,第1卷,第1章,例128;1999年第2卷,见问题5.13(b)。
链接
Manyama Seiichi,n=0..449的n,a(n)表(T.D.Noe的前102个术语)
马塞洛·阿奎尔(Marcelo Aguiar)和弗兰克·索蒂尔(Frank Sottile),置换的Malvenuto-Reutenauer-Hopf代数的结构,arXiv:math/0203282[math.CO],2002-2005。
马塞洛·阿奎尔和亚伦·劳夫,同一性的卷积能力,第25届形式幂级数与代数组合数学国际会议(FPSAC 2013),2013年,法国巴黎。离散数学和理论计算机科学,第1053-1064页,2013年,DMTCS论文集<hal-01229682>。
M.Aguiar和A.Lauve,分次连通Hopf代数中恒等式的对足和卷积幂,FPSAC 2013巴黎,法国DMTCS程序。AS,2013年,1083-1094。
马塞洛·阿奎尔(Marcelo Aguiar)和斯瓦普尼尔·马哈扬(Swapneel Mahajan),关于Hopf幺半群的Hadamard积, 2013.
Joerg Arndt,生成随机排列,博士论文,澳大利亚国立大学,堪培拉,澳大利亚,(2010年)。
Joerg Arndt,计算事项(Fxtbook),第281页
罗兰·巴赫(Roland Bacher)和克里斯托夫·鲁特纳(Christophe Reutenauer),右理想的个数与不可分解置换的q类比,arXiv预印本arXiv:11511.00426[math.CO],2015。
保罗·巴里,关于几乎是其自身生成矩阵的数字三角形的注记,arXiv:1804.06801[math.CO],2018年。
Julien Berestycki、Eric Brunet和Zhan Shi,有多少进化史只会增加体质?,arXiv预印本arXiv:1304.0246[math.PR],2013。
Daniel Birmajer、Juan B.Gil和Michael D.Weiner,Bell变换族,arXiv:1803.07727[math.CO],2018年。
E.W.Bowen和N.J.A.Sloane,通信,1976年
David Callan,稳定间隔自由排列的计数《整数序列杂志》,第7卷(2004年),第04.1.8条。
彼得·卡梅伦的博客,对称群,11,发布于2011年4月9日。
Mahir Bilen Can、Luke Nelson和Kevin Treat,对称群上的Catalanization映射,枚举。梳。申请。(2022)第2卷,第4期,#S4PP7。
Daniel Chen和Sebastian Ohlig,完全无歧义树的关联置换与Zubieta猜想,arXiv:2210.1117[math.CO],2022。
范忠和R.L.Graham,原始杂耍序列,美国数学。月刊115(3)(2008)185-194。
L.Comtet,l’inverse de la série formelle Sum n的Surles系数!时间、Comptes Rend。阿卡德。科学。巴黎,A 275(1972),569-572。
L.Comtet,系列反转,C.R.学院。巴黎科学院,t.275(1972年9月25日),569-572。(带注释的扫描副本)
戴新乐、Jordan Long和Karen Yeats,树木无亚发散胶,arXiv:2106.07494[math.CO],2021。
M.A.Deryagina和A.D.Mednykh,关于给定边数的圆映射的计数《西伯利亚数学杂志》,第54期,第6期,2013年,624-639。
斯托扬·迪米特洛夫,按洗牌方法和队列排序,arXiv:2103.04332[math.CO],2021。
J.D.Dixon,生成对称群的概率,数学。字110(1969)199-205。
约翰·迪克森,生成对称群和交替群的渐近性《组合数学电子杂志》,第11卷(2),R56。
G.Duchamp、F.Hivert和J.-Y.Thibon,非交换对称函数VI:自由拟对称函数及相关代数,arXiv:math/0105065[math.CO],2001年。
G.A.Edgar,初学者Transseries,arXiv:0801.4877[math.RA],2008-2009年。
理查德·埃伦堡(Richard Ehrenborg)、加博尔·海泰伊(Gábor Hetyei)和玛格丽特·雷迪(Margaret Readdy),加泰罗尼亚-斯皮策排列,arXiv:2310.06288[math.CO],2023。见第19页。
杰西·埃利奥特,素数计数函数的渐近展开,arXiv:1809.06633[math.NT],2018年。
P.Flajolet和R.Sedgewick,分析组合数学, 2009; 参见第90页。
A.L.L.Gao、S.Kitaev和P.B.Zhang。关于避免不可分解排列的模式,arXiv:1605.05490[math.CO],2016年。
I.M.Gessel和R.P.Stanley代数枚举(生成函数见第7-8页。)
P.Hegarty和A.Martinsson,不同健身景观模型中可达路径的存在性,arXiv预印本arXiv:1210.4798[math.PR],2012.-发件人N.J.A.斯隆2013年1月1日
V.Jelínek和P.Valtr,置换类的分裂与Ramsey性质,arXiv预印本arXiv:1307.0027[math.CO],2013。
B.R.Jones,树钩长度公式、费曼规则和B级数,西蒙·弗雷泽大学硕士论文,2014年。
A.金,生成不可分解排列,离散数学。,306 (2006), 508-518.
Y.Koh和S.Ree,连通置换图,离散数学。307 (2007), 2628-2635.
M.K.Krotter、I.C.Christov、J.M.Ottino和R.M.Lueptow,线段的剪切和乱序:通过区间交换变换进行混合,arXiv预印本arXiv:1208.2052[物理学.flu-dyn],2012.-发件人N.J.A.斯隆2012年12月25日
Ajay Kumar和Chanchal Kumar,排列避免模式诱导的单项式理想, 2018.
Chanchal Kumar和Amit Roy,整数序列与单项式理想,arXiv:2003.10098[math.CO],2020年。
史蒂文·林顿、詹姆斯·普罗普、汤姆·罗比和朱利安·韦斯特,约束转置产生的各种关系下置换的等价类《整数序列杂志》,第15卷(2012年),第12.9.1号。
R.J.Martin和M.J.Kearney,一个精确可解的自进化递推,arXiv:1103.4936[math.CO],2011年。
R.J.Martin和M.J.Kearney,一个精确可解的自进化递推、枇杷。数学。,80 (2010), 291-318. 见第292页。
理查德·马丁(Richard J.Martin)和迈克尔·卡尼(Michael J.Kearney),某些组合递归的积分表示《组合数学》:35:3(2015),309-315。
Jean-Christophe Novelli和Jean-Yves Thibon,自由拟对称函数、环积的下降代数和非交换多对称函数(2008); arXiv:0806.3682[math.CO]。离散数学。310(2010),第24期,3584-3606。
P.Ossona de Mendez和P.Rosenstiehl,置换的传递性和连通性《组合数学》,24(2004年第3期),487-501。
L.Panaitopol,应用于Koninck-Ivić结果的pi(x)公式,Nieuw Arch。威斯克。5/1 55-56 (2000).
文森特·皮劳,砖多面体、格商和Hopf代数,arXiv:1505.07665[math.CO],2015年。
S.Poirier和C.Reutenauer,阿尔盖布雷斯·霍普夫(Algèbres Hopf de tableaux),《科学年鉴》。数学。魁北克19(95),第1号,79-90。
N.阅读非交叉分区和碎片交集顺序《代数组合》33(2011),第4期。arXiv预印本arXiv:0909.3288,[数学.CO],2009年。
R.P.斯坦利,置换的下降集和连通集《整数序列杂志》,第8卷(2005年),第05.3.8条。
蒂莫西·沃尔什,非同构映射和超映射的空间有效生成《整数序列杂志》,第18卷(2015年),第15.4.3条。
马塞尔·维恩布斯特(Marcel Wienöbst)、马克斯·班纳赫(Max Bannach)和马西耶·李希·基维茨(Maciej Li si kiewicz),马尔可夫等效DAG计数和采样的多项式时间算法及其应用,arXiv:2205.02654[cs.LG],2022年。
严军,停车功能中的模式回避结果,arXiv:2404.07958[math.CO],2024。见第7页。
配方奶粉
G.f.:2-1/求和{k>=0}k*x ^k。
同时a(n)=n!-求和{k=1..n-1}k*a(n-k)[鲍文,1976年]。
还有发散级数展开对数Sum_{n>=0}n!中的系数*x^n=Sum_{n>=1}a(n+1)*x^n/n【Bowen,1976年】。
a(n)=(-1)^(n-1)*det{|1!2!…n!|1 1!…(n-1”)!|0 1 1!……(n-2)!|…|0…01 1!|}。
阶乘数的INVERTi变换,A000142号从n=1开始-安蒂·卡图恩2003年5月30日
给出三角形[0,1,0,1,0,1,0,0,1,1,1…]的行和A084938号; 这个三角形A089949号. -菲利普·德尔汉姆2003年12月30日
a(n+1)=和{k=0..n}A089949号(n,k)-菲利普·德尔汉姆2006年10月16日
L.g.f.:求和{n>=1}a(n)*x^n/n=log(求和{n>=0}n!*x^n)-保罗·D·汉纳2007年9月19日
G.f.:1+x/(1-x/(1-2*x/(1-2*x/-保罗·巴里2008年10月7日
a(n)=-和{i=0..n}(-1)^i*A090238号(n,i)对于n>0-彼得·卢什尼2009年3月13日
发件人加里·亚当森2011年7月14日:(开始)
a(n)=M^(n-1)中的左上项,M=三角形A128175号作为一个无限平方乘积矩阵(删除第一个“1”);如下:
1, 1, 0, 0, 0, 0, ...
2, 2, 1, 0, 0, 0, ...
4, 4, 3, 1, 0, 0, ...
8, 8, 7, 4, 1, 0, ...
16, 16, 15, 11, 5, 1, ...
…(结束)
O.g.f.满足:A(x)=x-x*A(x-保罗·D·汉纳2011年7月30日
发件人谢尔盖·格拉德科夫斯基,2012年6月24日:(开始)
设A(x)为g.f。;然后
A(x)=1/Q(0),其中Q(k)=x+1+x*k-(k+2)*x/Q(k+1)。
A(x)=(1-1/U(0))/x,当U(k)=1+x*(2*k+1)/(1-2*x*(k+1)或(2*x*(k+1)+1/U(k+1。(结束)
发件人谢尔盖·格拉德科夫斯基2013年5月、6月、8月:(开始)
连续分数:
G.f.:1-G(0)/2,其中G(k)=1+1/(1-x*(2*k+2)/。
G.f.:(x/2)*G(0),其中G(k)=1+1/(1-x*(k+1)/(x*(k+1/2)+1/G(k+1)))。
G.f.:x*G(0),其中G(k)=1-x*(k+1)/(x-1/G(k+1))。
G.f.:1-1/G(0),其中G(k)=1-x*(k+1)/(x*(k+1)-1/(1-x*(k+1)/。
G.f.:x*W(0),其中W(k)=1-x*(k+1)/。
(结束)
a(n)=A233824型(n-1)如果n>0。(证明集b(n)=A233824型(n) ,因此b(n)=n*n!-求和{k=1..n-1}k*b(n-k)。要得到n>=0时的a(n+1)=b(n),请在n上进行归纳,使用(n+1)!=n*n!+n!,并将总和中的k替换为k+1。)-乔纳森·桑多2013年12月19日
a(n)~n!*(1-2/n-1/n^2-5/n^3-32/n^4-253/n^5-2381/n^6-25912/n^7-319339/n^8-4388949/n^9-66495386/n^10),系数见A260503型. -瓦茨拉夫·科特索维奇,2015年7月27日
对于n>0,a(n)=(A059439号(n)-A259472型(n) )/2-瓦茨拉夫·科特索维奇2015年8月3日
发件人彼得·巴拉2017年5月23日:(开始)
镀锌:1+x/(1+x-2*x/(1+2*x-3*x/。囊性纤维变性。A000698号.
G.f.:1/(1-x/(1+x-x/(1-2*x/(1-2*x/)(1-3*x/。(结束)
猜想:a(n)=A370380型(n-2,0)=A370381飞机(n-2,0),对于n>1,a(0)=a(1)=1-米哈伊尔·库尔科夫2024年4月26日
例子
G.f.=1+x+x^2+3*x^3+13*x^4+71*x^5+461*x^6+3447*x^7+29093*x^8+。。。
发件人彼得·卢什尼,2022年8月3日:(开始)
如果在1..n-1中存在一个i,使得范围1..i中的所有j和范围i+1..n中的所有k都是p(j)<p(k),那么[n]中的置换p(其中n>=0)是可约的。(注意,范围a.b.包括a和b。)如果这样的i存在,我们说i在i处分裂排列。
示例:
*()不可约,因为没有将()分割的索引i。(=>a(0)=1)
*(1)是不可约的,因为没有分裂(1)的索引i。(=>a(1)=1)
*由于索引1将(1,2)拆分为p(1)<p(2),所以(1,2中)是可约的。
*(2,1)是不可约的,因为在唯一的势分裂点i=1处,我们有p(1)>p(2)。(=>a(2)=1)
*对于n=3,我们有(1,2,3),(1,3,2)和(2,1,3)是可约的,并且(2,3,1),(3,1,2)和(3,2,1)是不可约的。(结束)
MAPLE公司
反转([seq(n!,n=1..20)]);
A003319号:=proc(n)选项记忆;n!-添加(n-j)*A003319号(j) ,j=1..n-1)结束;
[顺序(A003319号(n) ,n=0..50)]#N.J.A.斯隆2011年12月28日
级数(2-1/超几何([1,1],[],x),x=0,50)#马克·范·霍伊2013年4月18日
数学
a[n]:=a[n]=n!-求和[k!*a[n-k],{k,1,n-1}];表[a[n],{n,0,20}](*Jean-François Alcover公司,2011年10月11日,在给定公式后*)
系数列表[假设[Element[x,Reals],Series[2-E^(1/x)*x/ExpIntegralEi[1/x],{x,0,20}]],x](*瓦茨拉夫·科特索维奇2014年3月7日*)
a[n]:=如果[n<2,1,a[n]=(n-2)a[n-1]+和[a[k]a[n-k],{k,n-1}]];(*迈克尔·索莫斯2015年2月23日*)
表[级数系数[1+x/(1+ContinuedFractionK[-楼层[(k+2)/2]*x,1,{k,1,n}]),{x,0,n}],{n,0,20}](*瓦茨拉夫·科特索维奇2017年9月29日*)
黄体脂酮素
(PARI){a(n)=my(a);如果(n<1,1,a=向量(n);a[1]=1;对于(k=2,n,a[k]=(k-2)*a[k-1]+和(j=1,k-1,a[j]*a[k]);a[n])}/*迈克尔·索莫斯2011年7月24日*/
(PARI){如果(n<1,1,a(n)=局部(a=x);对于(i=1,n,a=x-x*a+a^2+x^2*a'+x*O(x^n));波尔科夫(a,n))}/*保罗·D·汉纳2011年7月30日*/
(鼠尾草)
定义A003319号_列表(长度):
R、 C=[1],[1]+[0]*(长度-1)
对于范围(1,len)中的n:
对于范围(n,0,-1)中的k:
C[k]=C[k-1]*k
C[0]=-总和(范围(1,n+1)中k的C[k])
R.append(-C[0])
返回R
打印(A003319号_列表(21))#彼得·卢什尼2016年2月19日
交叉参考
请参见A167894号用于另一个版本。
平分法给出A272656型,A272657型.
的行总和A111184号A089949号.
的前导对角线A059438号.对角线为A263484型.
囊性纤维变性。A090238号,A000698号,A356291型(可约排列)。
第k列=第0列,共列A370380型A370381飞机(没有初始项对,偏移量不同)。
关键词
非n,容易的,美好的
作者
扩展
更多术语来自迈克尔·索莫斯2000年1月26日
Marcelo Aguiar(maguiar(AT)math.tamu.edu)的补充评论,2002年3月28日
添加了a(0)=0(一些公式现在可能需要调整)-N.J.A.斯隆2012年9月12日
编辑并设置(0)=1彼得·卢什尼2022年8月3日
状态
经核准的