|
|
A243753型 |
| 半长n的Dyck路径的数目A(n,k)避免了k的二进制展开式给出的连续步长模式,其中1=U=(1,1),0=D=(1,-1);方阵A(n,k),n>=0,k>=0。 |
|
24
|
|
|
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
(列表;桌子;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,40
|
|
链接
|
阿洛伊斯·海因茨,反对角线n=0..140,平坦
|
|
例子
|
方阵A(n,k)开始:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, ...
0, 0, 0, 1, 1, 2, 1, 4, 4, 4, ...
0, 0, 0, 1, 1, 4, 1, 9, 9, 9, ...
0, 0, 0, 1, 1, 9, 1, 21, 21, 23, ...
0, 0, 0, 1, 1, 21, 1, 51, 51, 63, ...
0, 0, 0, 1, 1, 51, 1, 127, 127, 178, ...
0, 0, 0, 1, 1, 127, 1, 323, 323, 514, ...
0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
|
|
MAPLE公司
|
A: =proc(n,k)选项记忆;局部b、m、r、h;
如果k<2,则返回`if`(n=0,1,0)fi;
m: =iquo(k,2,'r');h: =2^ilog2(k);b:=
proc(x,y,t)选项记忆`if`(y<0或y>x,0,`if`(x=0,1,
`如果`(t=m且r=1,0,b(x-1,y+1,irem(2*t+1,h))+
`如果`(t=m且r=0,0,b(x-1,y-1,irem(2*t,h))))
结束;忘记(b);
b(2*n,0,0)
结束时间:
seq(seq(A(n,d-n),n=0..d),d=0..14);
|
|
数学
|
A[n_,k_]:=A[n,k]=模[{b,m,r,h},如果[k<2,返回[If[n==0,1,0]];{m,r}=商余数[k,2];h=2^楼层[Log[2,k]];b[x_,y_,t_]:=b[x,y;b[2*n,0,0]];表[表[A[n,d-n],{n,0,d}],{d,0,14}]//扁平(*Jean-François Alcover公司2015年1月27日之后阿洛伊斯·海因茨*)
|
|
交叉参考
|
列给出:0、1、2:A000007号, 3, 4, 6:A000012号, 5:A001006号(n-1)对于n>0,7,8,14:A001006号, 9:A135307号, 10:A078481号对于n>0、11、13:A105633号(n-1)对于n>0,12:A082582号, 15, 16:A036765号, 19, 27:A114465号, 20, 24, 26:A157003号, 21:A247333型, 25:A187256号(n-1)对于n>0。
主对角线给出A243754型或第k列=第0列,共列A243752型.
囊性纤维变性。A242450型,A243827号,A243828号,A243829号,A243830型,A243831型,A243832型,A243833型,A243834型,A243835型,A243836型.
上下文中的序列:A354841型 A339772型 A250211型*A219238型 A025918号 A030425号
相邻序列:A243750型 A243751型 A243752型*A243754型 A243755型 A243756型
|
|
关键词
|
非n,表
|
|
作者
|
阿洛伊斯·海因茨2014年6月9日
|
|
状态
|
经核准的
|
|
|
|