登录
A224480型
使x^n+sum_{k=1}^np_k*x^{n-k}是不可约模q的最小素数q,其中p_k表示第k素数。
4
2, 11, 2, 2, 2, 2, 2, 53, 13, 3, 5, 2, 2, 2, 2, 421, 29, 19, 7, 2, 29, 37, 2, 743, 41, 23, 13, 47, 5, 2, 269, 139, 211, 31, 73, 307, 2, 2, 5, 89, 23, 839, 181, 379, 173, 89, 2, 353, 101, 307, 3, 29, 389, 2, 863, 71, 503, 619, 193, 2
抵消
1,1
评论
猜想:对于所有n>0的情况,a(n)<=(n+4)*(n+5)+1。
链接
例子
a(10)=3,因为P(x)=x^{10}+2*x^9+3*x^8+5*x^7+7*x^6
+11*x^5+13*x^4+17*x^3+19*x^2+23*x+29是不可约模3,但可约模2,for,
P(x)==(x+1)^2*(x^3+x+1)*(x^5+x^3+1)(模式2)。
还要注意a(16)=421=(16+4)*(16+5)+1。
数学
A[n_,x_]:=A[n,x]=和[x^n+素数[k]*x^(n-k),{k,1,n}]
Do[Do[If[If[不可约多项式Q[A[n,x],模->素数[k]]==真,打印[n,“”,素数[k]];转到[aa]],{k,1,PrimePi[n^2+9n+21]}];
打印[n,“”,反例];标签[aa];继续,{n,1100}]
关键词
非n
作者
孙志伟2013年4月7日
状态
经核准的