|
|
A000025号 |
| 三阶模拟θ函数f(q)的系数。 (原名M0433 N0164)
|
|
19
|
|
|
1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,3
|
|
评论
|
a(n)=n的偶数秩分区数减去奇数秩的分区数。分区的秩是其最大部分减去部分数。
|
|
参考文献
|
G.E.Andrews,《分割理论》,Addison-Wesley,1976年,第82页,示例4和5。
Srinivasa Ramanujan,《论文集》,切尔西,纽约,1962年,第354-355页
斯里尼瓦萨·拉马努扬(Srinivasa Ramanujan),《失落的笔记本和其他未发表的论文》,新德里纳罗莎出版社,1988年,第17、31页。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
|
|
链接
|
新泽西州罚款,基本超几何级数及其应用阿默尔。数学。Soc.,1988年;第55页,等式(26.11),(26.24)。
小野康夫,天才的遗言,通知Amer。数学。《社会学杂志》,57(2010),1410-1419。
|
|
配方奶粉
|
通用公式:1+Sum_{n>0}(q^(n^2)/Product_{i=1..n}(1+q^i)^2)。
通用公式:(1+4*Sum_{n>0}(-1)^n*q^(n*(3*n+1)/2)/(1+q^n))/Product_{i>0}(1-q^i)。
a(n)~-(-1)^n*exp(Pi*sqrt(n/6))/(2*sqert(n))[Ramanujan]-瓦茨拉夫·科特索维奇2019年6月10日
通用公式:1-和{n>=1}(-1)^n*x^n/产品{k=1..n}1+x^k。见Fine,等式26.22,第55页-彼得·巴拉2021年2月4日
通用公式:1+(1/Product_{k>=1}(1-x^k))*求和_{k>=1}(-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x*k)^2/(1+x^k)。(结束)
|
|
例子
|
G.f.=1+q-2*q^2+3*q^3-3*q^4+3*q^5-5*q^6+7*q^7-6*q^8+6*q^9+。。。
|
|
MAPLE公司
|
a: =m->系数(级数((1+4*add((-1)^n*q^(n*(3*n+1)/2))/
(1+q^n),n=1..m))/mul(1-q^i,i=1..m,q,m+1),q,m):
seq(a(n),n=0..120);
|
|
数学
|
系数列表[级数[(1+4Sum[(-1)^nq^(n(3n+1)/2)/(1+q^n),{n,1,10}])/和[(-1(*N.J.A.斯隆*)
sgn[P_(*a分区*)]:=
签名[
排列列表[
循环[展平[
SplitBy[Range[Total[P]],(函数[{x},x>#1]&)/@
累加[P]],长度[P]-1]]]
共轭[P_List(*a分区*)]:=
模块[{s=选择[P,#1>0&],i,row,r},row=长度[s];
表[r=row;而[s[[row]]<=i,row-->;r、 {i,第一个[s]}]
总计[函数[{x},sgn[x]sgn[共轭[x]]]/@
整数分区[#]]和/@范围[20]
a[n_]:=如果[n<0,0,系列系数[Sum[x^k^2/乘积[1+x^j,{j,k}]^2,{k,0,平方@n}],{x,0,n}]];(*迈克尔·索莫斯2015年6月30日*)
|
|
黄体脂酮素
|
(PARI){a(n)=如果(n<0,0,polcoeff(和(k=1,平方(n),x^k^2/prod(i=1,k,1+x^i,1+x*O(x^(n-k^2)))^2,1),n))}/*迈克尔·索莫斯2007年9月2日*/
(PARI)我的(N=60,x='x+O('x^N));Vec(1+1/prod(k=1,N,1-x^k)*总和(k=1,N,(-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^ k)^2/(1+x^ k))\\Seiichi Manyama先生2023年5月23日
|
|
交叉参考
|
|
|
关键词
|
签名,容易的,美好的,改变
|
|
作者
|
|
|
扩展
|
|
|
状态
|
经核准的
|
|
|
|