旋转曲面是表面通过旋转二维曲线关于一个轴。生成的曲面因此总是具有方位对称性。旋转表面的例子包括这个苹果表面,圆锥体(不包括底座),圆锥截头体(不包括末端),圆柱(不包括末端),达尔文-德Sitter球体,加布里埃尔号角,双曲面,柠檬色表面,扁圆的球体,抛物面的,长形的球体,伪球,球,球体、和圆环体(及其泛化环形的).
通过旋转曲线获得的旋转曲面的面积元素
从
到
关于x个-轴是
所以表面积是
(《使徒行传》1969年,第286页;卡普兰1992年,第251页;安东1999年,第380页)。如果曲线由参数化指定
,通过旋转曲线获得的表面积关于x个-轴对于
如果
在此间隔中,由以下公式给出
 |
(5)
|
同样,通过旋转曲线获得的旋转曲面面积
从
到
关于年-轴已给出通过
(安东,1999年,第380页)。如果曲线由参数化指定
,获得的表面积通过围绕年-轴对于
如果
在此间隔中,由以下公式给出
 |
(8)
|
下表给出了侧面面积
对于一些常见的旋转表面
表示半径(圆锥体,圆柱体、球体或分区),
和
圆台的内外半径,
高度,
这个椭圆率的球体,和
和
赤道半径和极半径(对于球体)或圆形截面的半径和旋转半径(对于圆环体)。
旋转曲面的标准参数化由下式给出
对于这样参数化的曲线,第一个基本的形式有
无论在何处
和
为非零,则曲面为规则曲面基本的形式有
此外,该装置法向量是
 |
(18)
|
和主曲率是
这个高斯和意思是曲率是
(Gray 1997)。
帕普斯质心定理提供了体积旋转固体的横截面地区乘以质心旋转时所移动的距离。
另请参见
苹果表面,大麻素,圆锥体,圆锥果,圆柱,达尔文-德Sitter球体,八个曲面,加布里埃尔的喇叭,双曲线,柠檬表面,子午线,最小旋转曲面,椭圆形球体,帕普斯质心定理,抛物面,半岛表面,延长球体,伪球体,辛克莱的肥皂膜问题,革命的固体,球体,球体,表面平行旋转的,环形线圈,圆环体,波纹状 在数学世界课堂上探索这个主题
与Wolfram一起探索| Alpha
工具书类
H·安东。微积分:新视野,第6版。纽约:Wiley,1999年。阿波斯托尔,T.M。微积分,第2版,第2卷:多元微积分和线性代数及其应用微分方程和概率。马萨诸塞州沃尔瑟姆:布莱斯德尔,1969年。灰色,A.《革命表面》第20章现代曲线和曲面的微分几何与Mathematica,第二版。博卡牌手表佛罗里达州拉顿:CRC出版社,第457-480页,1997年。Hilbert,D.和Cohn-Vossen,圆柱、圆锥、圆锥截面及其旋转曲面§2英寸几何图形和想象力。纽约:切尔西,第7-11页,1999年。卡普兰,W。高级微积分,第三版。马萨诸塞州雷丁:Addison-Wesley,1992年。克莱西格,E.公司。有差别的几何学。纽约:多佛,第131页,1991年。参考Wolfram | Alpha
旋转曲面
引用如下:
埃里克·魏斯坦(Eric W.Weisstein)。“革命的表面。”发件人数学世界--Wolfram资源。https://mathworld.wolfram.com/SurfaceofRevolution.html
主题分类