多边形可以定义为“由多个点(称为顶点)和相等数量的线段(称为边)组成的几何对象”(如上所示)即平面上的一组循环有序的点,没有三个连续点共线,以及连接连续点对的线段。换句话说,多边形是平面上的闭合虚线”(Coxeter和Greitzer 1967年,第51页)。
不幸的是,在多边形的定义上存在很大分歧。其他来源通常将多边形(在上述意义上)定义为“闭合”带直边的平面图形”(盖勒特等。1989年,第162页),“以直线段为边界的闭合平面图形”(布朗什坦等。2003年,第137页),或“封闭平面图形边界由三条或更多成对终止于相同顶点数的线段,除顶点外,不相交”(Borowski和Borwein,2005年,这些定义都意味着多边形是一组线段加上它们所包围的区域,尽管它们从未精确定义其含义“闭合平面图形”,并普遍将多边形描述为闭合破碎没有内部阴影的黑色线条。
在计算机图形学术语中,术语多边形统一指的是“填充”多边形,正如沃尔夫拉姆语言的多边形命令,其中文档明确包含单词“filled”然而,这一公约也并非没有困难,因为自交叉多边形通常不是以填充方式渲染,而是以交替填充和非填充取决于自重叠的数量(参见上图)。
虽然“填充”用法与常见术语一致,例如“方形的面积为
,"也许最清楚的是使用术语“多边形薄板”或“填充”多边形”指以闭合折线为边界的区域。然而,为了符合常见用法并避免过度冗长仍将使用不精确的术语,例如“三角形的面积”来表示当上下文明确了这一含义时,将其转换为三角形薄板的区域。
多边形
顶点(和
侧面)称为
-贡。平面上仅有的点属于两个多边形边的多边形多边形顶点被称为简单多边形.
如果所有边和角都相等,则多边形称为有规律的。多边形可以是凸面的,凹面的,或明星“多边形”一词来源于希腊人聚,表示“很多”,以及戈尼亚,表示“角度”
最常见的多边形类型是正多边形,这是一个凸多边形边长相等和角度。将多边形概括为三维称为多面体,分为四个维度称为多毛类,并进入
尺寸称为多面体.
总额
左上图中的内角剖分多边形的
 |
(1)
|
但是
 |
(2)
|
和的总和角的
三角形是
 |
(3)
|
因此,
 |
(4)
|
同样的方程可以用外角(右上图)或从单个顶点进行三角剖分(下图)。
下表给出了多边形的名称
边。多边形的单词
侧面(例如。,五角形,六角形,七边形等)可以引用其中之一有规律的或非规则多边形,取决于上下文。因此,最好指定“常规
-gon”。对于某些多边形术语可以互换使用,例如,非正方形和九边形都指多边形具有
边。
另请参见
257克,65537加仑,拟人多边形,双中心多边形,卡诺多边形定理,混沌游戏,凸多边形,循环多边形,判定元件Moivre编号,衍生多边形,等角的多边形,等边多边形,等边的三角形,欧拉多边形分割问题,十七边形,六角形,六线形,照明问题,菱形(Lozenge),八角形,平行四边形,巴斯卡定理,五角形,五角星,Petrie多边形,平面多边形,Polychoron公司,多边形面积,多边形外切,多边形对角线的,多边形划线,多边形结,多边形编号,多边形螺旋形的,多边形图,多面体公式,多面体,多聚物,四边形,四边形的,规则多边形,勒洛多边形,菱形(Rhombus),转子,轮盘赌,简单多边形,简单,方形,星形多边形,梯形,梯形,三角形,可见点,沃罗诺伊多边形,Wallace-Bolyai-Gerwien公司定理 探索这个数学世界课堂上的主题
与Wolfram一起探索| Alpha
工具书类
Beyer,W.H。CRC标准数学表,第28版。佛罗里达州博卡拉顿:CRC出版社,第124-125页和1961987年。Borowski,E.J.和Borwein,J.M.(编辑)。柯林斯网络链接数学词典,第二版。纽约:哈珀柯林斯出版社,2005年。布朗什坦,身份证号码。;Semendyayev,K.A。;穆索尔,G。;和Muehlig,H。手册数学,第四版。柏林:斯普林格出版社,2003年。科克塞特,H.S.M。和Greitzer,S.L。几何图形再次访问。华盛顿特区:数学。美国协会。,1967盖勒特,W。;哥特瓦尔德,S。;海尔威奇,M。;Kästner,H。;和Künstner,H.(编辑)。越南卢比简明数学百科全书,第二版。纽约:Van Nostrand Reinhold,1989参考Wolfram | Alpha
多边形
引用如下:
埃里克·魏斯坦(Eric W.Weisstein)。“多边形”来自数学世界--Wolfram Web资源。https://mathworld.wolfram.com/Polygon.html
主题分类