来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a058096 Showing 1-1 of 1 %I A058096 %S A058096 1,0,-3,2,0,6,5,0,3,6,0,-18,12,0,21,16,0,6,27,0,-60,34,0,72,51,0,24, %T A058096 70,0,-168,101,0,183,134,0,54,182,0,-411,240,0,450,322,0,138,416,0, %U A058096 -936,544,0,981,696,0,282,902,0,-1989,1144,0,2070,1462,0,597,1832 %N A058096 McKay-Thompson series of class 9d for Monster. %H A058096 G. C. Greubel,n,a(n)n=1…5000的表(条款1…997从G. A. Edgar)%%H A058096 D福特,J. McKay和S.P.诺顿,更多关于可复制功能,C.代数22,第13号,5175-5193(1994).0%H A058096怪物简单群的McKayy汤普森级数的索引项%F A058096 G.F是满足F(- 1 /(81 T))=f(t)的周期1傅立叶级数,其中q=EXP(2πI T)。-迈克尔索莫斯,8月28日2015美分%F A058096 A(3×N - 1)=A058601(n)。A(3×n)=0。A(3×N+ 1)=-3×A192309(n)。- _Michael Somos_, Aug 28 2015 %F A058096 Expansion of A - 3/A, where A = (eta(q^9)^2/(eta(q^3)*eta(q^27)))^2, in powers of q. - _G. C. Greubel_, Jun 03 2018 %e A058096 T9d = 1/q - 3*q + 2*q^2 + 6*q^4 + 5*q^5 + 3*q^7 + 6*q^8 - 18*q^10 + 12*q^11 + ... %t A058096 a[ n_] := With[ {A = 1/q (QPochhammer[ q^9]^2 / (QPochhammer[ q^3] QPochhammer[ q^27]))^2}, seriesCoefficient[ A - 3 / A, {q, 0, n}]]; (* _Michael Somos_, Aug 28 2015 *) %t A058096 eta[q_]:= q^(1/24)*QPochhammer[q]; A := (eta[q^9]^2/(eta[q^3]*eta[q^27]) )^2; a := CoefficientList[Series[q*(A - 3/A), {q, 0, 60}], q]; %t A058096 Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 03 2018 *) %o A058096 (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x^9 + A)^4 / (eta(x^3 + A) * eta(x^27 + A))^2; polcoeff( A - 3 * x^2 / A, n))}; /* _Michael Somos_, Aug 28 2015 */ %Y A058096 Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. %Y A058096 Cf. A058601, A192309. %K A058096 sign %O A058096 -1,3 %A A058096 _N. J. A. Sloane_, 11月27日在OEIS终端用户许可协议下可用的2000μl内容:HTTP:/OEIS.Org/许可证