|
|
A297835型 |
| 互补方程a(n)=a(1)*b(n-1)-a(0)*b。请参见注释。 |
|
2
|
|
|
1, 2, 10, 13, 16, 19, 22, 25, 30, 32, 37, 39, 44, 46, 51, 53, 58, 60, 65, 67, 70, 73, 78, 82, 84, 87, 90, 95, 99, 101, 104, 107, 112, 116, 118, 121, 124, 129, 133, 135, 138, 141, 146, 150, 152, 155, 158, 163, 167, 169, 174, 176, 181, 183, 186, 189, 194, 196
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,2
|
|
评论
|
递增互补序列a()和b()由标题方程和初值唯一确定。请参见A297830型有关相关序列的指南。
猜想:a(n)-(2+sqrt(2))*n<7表示n>=1。
|
|
链接
|
|
|
例子
|
a(0)=1,a(1)=2,b(0)=3,b(1)=4,因此a(2)=10。
补码:(b(n))=(3,4,6,7,8,9,11,12,14,15,17,20,…)
|
|
数学
|
a[0]=1;a[1]=2;b[0]=3;b[1]=4;
a[n]:=a[n]=a[1]*b[n-1]-a[0]*b[2]+2n+1;
j=1;当[j<100时,k=a[j]-j-1;
而[k<a[j+1]-j+1,b[k]=j+k+2;k++];j++];k个
|
|
交叉参考
|
|
|
关键词
|
非n,容易的
|
|
作者
|
|
|
状态
|
经核准的
|
|
|
|