来自在线整数百科全书的问候语!301331、1,1,1,1,1,1,1,1,1,1,1,41,61,1,1,32-1,1,32-91,51,1,691,51,61,14.61,1,41,32442.153243,316.516.32,15508310755,12616338,15701553,6141406,U %A301331 7077 00,1,25,9606,928023 7217,31244,11839 318529万380380,1632 545 9624248,3 1,http://oei.org/y*搜索:ID:A301331,显示1~(1)I A30133%%As7828 N %A301331 N的组成(有序分区)的数目与N.%%A301331具有相同数量的因式的部分与合成有关的序列的索引条目3a(n)=[x^ n] 1 /(1 - SuMu{{ D(k)=D(n)} x ^ k).[%e a30133a(14)=3 ],因为我们有[14,[8, 6 ]和[6, 8 ] ],其中14, 8和6是4个数。%F A3013 %p A301331 add(`if`(tau(j)=k, b(n-j), 0), j=1..n)) %p A301331 end: b(m) %p A301331 end: %p A301331 seq(a(n), n=0..80); # _Alois P. Heinz_, Mar 18 2018 %t A301331 Table[SeriesCoefficient[1/(1 - Sum[Boole[DivisorSigma[0, k] == DivisorSigma[0, n]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 65}] %Y A301331 Cf. A000005, A300977, A300978, A301332,A301333 .%%K A301331,NN,A301331,0,6%%A301331,ILYA Gutkoksyyy],3月18日2018‰的内容在OEIS最终用户许可协议下可用:HTTP:/OEIS.Org/许可证