登录
A000675号
具有n个节点的中心三价(或硼,或二元)树的数量。
(原名M0977 N0366)
1, 1, 0, 1, 1, 1, 2, 4, 5, 10, 19, 36, 68, 138, 277, 581, 1218, 2591, 5545, 12026, 26226, 57719, 127685, 284109, 634919, 1425516, 3212890, 7269605, 16504439, 37592604, 85876345, 196717882, 451768247, 1039990913, 2399476030, 5547849750
抵消
0,7
参考文献
A.Cayley,《关于树的分析形式及其在化学组合理论中的应用》,英国协会进展报告。科学。45(1875),257-305=数学。论文,第9卷,427-460(见第451页)。
R.C.阅读,个人交流。
N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。
N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。
链接
E.M.Rains和N.J.A.Sloane,关于Cayley的烷烃(或4-价树)计数《整数序列》,第2卷(1999年),第99.1.1条。
数学
n=50;(*来自Rains和Sloane的算法*)
S2[f,h,x_]:=f[h,x]^2/2+f[h、x^2]/2;
S3[f,h,x_]:=f[h,x]^3/6+f[h、x]f[h和x^2]/2+f[h,x^3]/3;
T[-1,z_]:=1;T[h_,z_]:=T[h,z]=表[z^k,{k,0,n}]。取[系数表[z^(n+1)+1+S2[T,h-1,z]z,z],n+1];
求和[Take[CoefficientList[z^(n+1)+S3[T,h-1,z]z-S3[T,h-2,z]z-(T[h-1,z]-T[h-2,z])(T[h-1,z]-1),z],n+1],{h,1,n/2}]+PadRight[{1,1},n+1)(*罗伯特·拉塞尔2018年9月15日*)
关键词
非n,容易的,美好的
作者
状态
经核准的