登录
A288979型
基于5细胞von Neumann邻域,“规则533”定义的二维细胞自动机从角落到第n个生长阶段原点的对角线的十进制表示。
4
1, 2, 6, 13, 30, 56, 127, 243, 508, 999, 2041, 4038, 8182, 16265, 32745, 65302, 131034, 261669, 524217, 1047630, 2097010, 4192405, 8388329, 16773406, 33553890, 67101277, 134216625, 268420174, 536868850, 1073711381, 2147479273, 4294906222, 8589926290
抵消
0,2
评论
在零级用单个黑色(ON)单元初始化。
参考文献
S.Wolfram,《一种新的科学》,Wolfram Media,2002年;第170页。
链接
罗伯特·普莱斯,n=0..126时的n、a(n)表
罗伯特·普莱斯,前20个阶段的图表
N.J.A.斯隆,元胞自动机中On单元数的研究,arXiv:1503.01168[math.CO],2015年
埃里克·魏斯坦的数学世界,基本元胞自动机
S.Wolfram,一种新的科学
Wolfram研究公司,Wolfram简单程序地图集
数学
CAStep[rule_,a_]:=映射[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},},a,2],{2}];
代码=533;阶段=128;
规则=整数位数[code,2,10];
g=2*级+1;(*网格最大尺寸*)
a=PadLeft[{{1}},{g,g},0,Floor[{g,c}/2]];(*电网上的初始ON电池*)
ca=a;
ca=表[ca=CAStep[规则,ca],{n,1,阶段+1}];
PrependTo[ca,a];
(*修剪整个网格以反映每个阶段一个单元格的增长*)
k=(长度[ca[[1]]]+1)/2;
ca=表[Table[Part[ca[[n]][[j]],范围[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
表[FromDigits[部分[ca[i]][[i]],范围[i,2*i-1]],10],{i,1,阶段-1}]
关键词
非n,容易的
作者
罗伯特·普莱斯2017年6月20日
状态
经核准的