登录
OEIS由OEIS基金会的许多慷慨捐赠者

 

标志
提示
(来自的问候整数序列在线百科全书!)
A288980型 基于5细胞von Neumann邻域,“规则533”定义的二维细胞自动机从原点到第n个生长阶段角的对角线的十进制表示。 4
1, 1, 3, 11, 15, 7, 127, 207, 127, 927, 1279, 1599, 3583, 9343, 19455, 26879, 47103, 168447, 323583, 467967, 647167, 2770943, 4964351, 7901183, 9404415, 48832511, 74383359, 119685119, 167641087, 707035135, 1270611967, 1988689919, 2482503679, 11686510591 (列表;图表;参考;;历史;文本;内部格式)
抵消
0.3
评论
在零级用单个黑色(ON)单元初始化。
参考文献
S.Wolfram,《一种新的科学》,Wolfram Media,2002年;第170页。
链接
罗伯特·普莱斯,n=0..126时的n、a(n)表
罗伯特·普莱斯,前20个阶段的图表
N.J.A.斯隆,元胞自动机中On单元数的研究,arXiv:1503.01168[math.CO],2015年
埃里克·魏斯坦的数学世界,基本元胞自动机
S.Wolfram,一种新的科学
Wolfram研究公司,Wolfram简单程序地图集
数学
CAStep[rule_,a_]:=映射[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},},a,2],{2}];
代码=533;阶段=128;
规则=整数位数[code,2,10];
g=2*级+1;(*网格的最大尺寸*)
a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]];(*电网上的初始ON电池*)
ca=a;
ca=表[ca=CAStep[rule,ca],{n,1,stages+1}];
PrependTo[ca,a];
(*修剪整个网格以反映每个阶段一个单元格的增长*)
k=(长度[ca[[1]]]+1)/2;
ca=表[Table[Part[ca[[n]][[j]],范围[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
表[FromDigits[部分[ca[i]][[i]],范围[i,2*i-1]],10],{i,1,阶段-1}]
交叉参考
囊性纤维变性。A288977型,A288978型,A288979型
关键词
非n,容易的
作者
罗伯特·普莱斯2017年6月20日
状态
经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|转换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。

上次修改时间:2023年9月24日22:14 EDT。包含365582个序列。(在oeis4上运行。)