#来自在线整数序列百科全书的问候!搜索:id:a225744 展示1-1 of 1 ;%I a225744;%S a225744 1,0,0,1,1,1,1,3,0,0,5,3,8,0,0,5,3,8,0,0,9,9,11,0,0,3,9,15,0,17,3,5,5,0,21,5,5,34,0,0,35,5,27,0,0,35,5,27,0,0,;%T a225744 29,17,17,9,9,0,0,15,18,35,35,0,11,9,9,39,0,41,9,9,9,9,9,9,9,9,24,0,45,21,76,0,15,11,51,0,27,19, %U a225744 17,0,57,15,59,0,40,97,33,0,65,15,21,0,69,37,71,0,39,17,45,0,77,34218,0,81,15,45,0,27,27,87,0,55,21,29,0,51,43,95,0,72,34 %N A225744给定群G和G的自同构f定义了G上的二元运算*x*y=f(xy^(-1))y,则(G,*)是量子。我们称之为广义Alexander quandle。如果G是abelian,那么(G,*)是Alexander quandle(参见A193024)。如果(G,*)的右翻译生成的群在G %H A225744 J.Scott Carter上是可传递的,则(G,*)是连通的,量子思想综述,arXiv:1002.4429[math.GT] %H A225744 W.E.Clark,M.Elhamdadi,M.Saito,T.Yeatman,结的量子着色及其应用《arXiv预印本arXiv:1312.3307202013年;%o A225744(GAP);%o A225744被连接:=功能(A);%o A225744本地B,LL;;;%o A225744 B:=transfersemat(A);;;%o A225744 B:=transsedmmat(A);;;;%o A225744 LL:=列表(B,x->PermList(x));;;%o A225744返回IsTransitive(Group(Group(LL),[1..Length(A)]);;;%o o A225744结束;;;;%o o o o一25744结束;;;;%o o o o o o A;(A);%o A)A225744 MakeGAlex:=函数(f,g) %o A225744局部e,n,QM,i,j;;;%o A225744 n:=元素(g);;;%o A225744 n:=长度(e);;;%o A225744 QM:=列表([1..n],t->[1..n[1..n])的;;;;%o A225744为i in[1..n]n]do;%o A225744为j j in[1..n]n]do;%o A225744 QM j[i][j]:=位置(e、图像(f,e,e[i]*e[e[j]^(1))*e[e[j](j])*e[j]);%e[j]);%取取取取取改天取取取取取取取取取取取取取取取o A225744外径; %o A225744外径; %o A225744 return QM; %o A225744结束;; %o A225744 a:=[];; %o A225744在[1..100]为n在[1..100]中的n为n做do;%o A225744 a[n]:=0;;;%o A225744 n:=NrSmallGroups(n);;%o A225744为u in[1..NN]n]do %o A225744 g:=小团体(n,u);;;%o A225744 ag:=自同构自组(g);;;%o A225744 eag:=列表(联合加环加环(ag,ag,代表)代表性);;%o A225744为t t在eag中的t做 为t在eag的t做 为t的%o A225744 QM:=MakeGAlex(t,g);%o A225744如果接通(QM)则a[n]:=a[n]+1;fi;;%o A225744 od; %o A225744 od;;%o A225744 od;;%o A225744 od;;;;%o A225744 a;;;%Y A225744比照A193067、A181771。;%Y A225744又见《OEIS指数》另见“定量子下OEIS索引”。;%K A225744 nonn;%o A225744 nonn;%o A225744 1,5;%a A225744 a A225744 a A225744 1,5;%a A225744 a A225744 a A225744 a A2744年埃德温·克拉克,2013年8月4日 #内容根据OEIS最终用户许可协议提供:http://OEIS.org/License