登录
A290836型
基于5细胞von Neumann邻域,“规则969”定义的二维细胞自动机从角点到第n个生长阶段原点的对角线的十进制表示。
4
1, 2, 5, 15, 28, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
抵消
0,2
评论
在零级用单个黑色(ON)单元初始化。
参考文献
S.Wolfram,《一种新的科学》,Wolfram Media,2002年;第170页。
链接
罗伯特·普莱斯,n=0..126时的n、a(n)表
罗伯特·普莱斯,前20个阶段的图表
N.J.A.斯隆,元胞自动机中On单元数的研究,arXiv:1503.01168[math.CO],2015年
埃里克·魏斯坦的数学世界,基本元胞自动机
S.Wolfram,一种新的科学
Wolfram研究公司,Wolfram简单程序地图集
公式
推测来自科林·巴克2017年8月12日:(开始)
通用格式:(1-x+x^2+4*x^3-7*x^4+9*x^5-6*x^6)/(1-x)*(1-2*x))。
对于n>4,a(n)=2^(1+n)-1。
当n>6时,a(n)=3*a(n-1)-2*a(n-2)。
(结束)
数学
CAStep[rule_,a_]:=映射[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},},a,2],{2}];
代码=969;阶段=128;
规则=整数位数[code,2,10];
g=2*级+1;(*网格的最大尺寸*)
a=PadLeft[{{1}},{g,g},0,Floor[{g,c}/2]];(*电网上的初始ON电池*)
ca=a;
ca=表[ca=CAStep[rule,ca],{n,1,stages+1}];
PrependTo[ca,a];
(*修剪整个网格以反映每个阶段一个单元格的增长*)
k=(长度[ca[[1]]]+1)/2;
ca=表[表[部分[ca[[n]][[j]],范围[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
表[FromDigits[部分[ca[i]][[i]],范围[i,2*i-1]],10],{i,1,阶段-1}]
关键词
非n,容易的
作者
罗伯特·普莱斯2017年8月11日
状态
经核准的