来自在线整数百科全书的问候语!Ⅰ,A216222,S 2A1,2,1,2,3,3,3,3,3,3,3,3,3,3,6,9,11,13,16,20,22,25,28,27,28,%,T,A216222,29,30,32,35,40,45,53,53,53,79,85,78,92,9598105111120132 145,% %U 216222 16017819621223 1247 2632 32 80801305319334,http://oei.org/y*搜索:ID:A216222,显示1-1为1352 %N A216222 Counting a set of restricted partitions %F A216222 G.f.: sum(k>=0, x^(k^2) * prod(j=1..k, (1+x^j)^2 ) ) = 1 +x^1*(1+x)^2 +x^4*(1+x)^2*(1+x^2)^2 +...+ x^k^2*(1+x)^2*(1+x^2)^2*(1+x^3)^2*...*(1+x^k)^2+... %t A216222 Take[CoefficientList[Sum[x^(k^2)*Product[1 + x^i, {i, k}]^2, {k, 0, 7}], x], 63] (* _Giovanni Resta_, Mar 13 2013 *) %K A216222 N216222,A216222,0%,3%A2A16222,大卫S.纽曼,3月13日2013‰E 2A216222 A(14)-A(62)来自于GiOvANi ReSTaTi,3月13日2013μl内容可在OEIS最终用户许可协议:HTTP:/OEIS.Org/许可证下获得