登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 


搜索: 编号:a200580
    排序:关联|参考文献||被改进的|创建     格式:长的|短的|数据
一元上三角矩阵超特征的维数指数之和。
+0
4
0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097
抵消
1,3
评论
有限域F(2)上单极上三角矩阵的超特征理论由{1,2,…,n}的集分区S(n)索引,其中{1,2,…,n}的集分区P是子集{(i,j):1<=i<j<=n}
这样,P中的(i,j)意味着(i,k),(k,j)并非所有i<l<j都在P中。
与P索引的超字符相关联的表示的维数由2^Dim(P)给出,其中Dim(P)=总和[j-i,(i,j)in P]。
我们得到的序列是a(n)=和[Dim(P),P in S(n)]。
链接
文森佐·利班迪,n=1..200时的n,a(n)表
M.Aguiar、C.Andre、C.Benedetti、N.Bergeron、Z.Chen、P.Diaconis、A.Hendrickson、S.Shoao、I.M.Isaacs、A.Jedwab、K.Johnson、G.Karali、A.Lauve、T.Le、S.Lewis、H.Li、K.Magaard、E.Marberg、J-C.Novelli、A.Pang、F.Saliola、L.Tevlin、J-Y.Thibon、N.Thiem、V.Venkateswaran、C.R.Vinroot、N.Yan和M.Zabrocki,超特征符、非交互性变量中的对称函数以及相关的Hopf代数,arXiv:1009.4134[math.CO],2010-2011年。
C.安德烈,酉三角群的基本特征《代数杂志》,175(1995),287-319。
B.Chern、P.Diaconis、D.M.Kane和R.C.Rhoades,集合分区统计平均值的闭合表达式, 2013.
Mikhail Khovanov、Victor Ostrik和Yakov Kononov,二维拓扑理论、有理函数及其张量包络,arXiv:2011.4758[math.QA],2020年。
配方奶粉
a(n)=-2*B(n+2)+(n+4)*B(n+1)其中B(i)=贝尔数A000110号【Chern等人】-N.J.A.斯隆,2013年6月10日[用于抵消2]
a(n)~n^3*Bell(n)/LambertW(n)^2*(1-2/LambertW(n))-瓦茨拉夫·科特索维奇2021年7月28日
MAPLE公司
b: =proc(n,k)选项记忆;
如果n=1和k=1,则返回(1)fi;
如果k=1,则返回(b(n-1,n-1))fi;
b(n,k-1)+b(n-1,k-1)
结束时间:
a: =proc(n)局部res,k;
分辨率:=0;
对于k到n-1,做res:=res+k*(n-k)*b(n,k)od;
物件
结束时间:
seq(a(n),n=1..34);
数学
表[-2贝尔B[n+3]+(n+5)贝尔B[n+2],{n,1,30}](*文森佐·利班迪2013年7月16日*)
黄体脂酮素
(岩浆)[-2*钟(n+3)+(n+5)*钟(n+2):n in[1..30]]//文森佐·利班迪2013年7月16日
交叉参考
囊性纤维变性。A011971号(序列由Aitken的数组b(n,k)计算得出)
a(n)=总和[k*(n-k)*b(n,k),k=1..n-1])。
囊性纤维变性。A200660型,2006年2月73日(与超性格理论相关的其他统计数据)。
囊性纤维变性。A000110号,A226507型.
关键字
非n
作者
南特尔·贝杰隆2011年11月19日
状态
经核准的

搜索在0.004秒内完成

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2024年9月21日17:12。包含376087个序列。(在oeis4上运行。)