登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 


A260749型
龙曲线三点中间反转。如果D:[0,1]是一条龙曲线,那么除了n之外,还有另外两个整数p和q(p<n<q),其中D(a(p)/(15*2^k))=D。
5
21, 42, 39, 84, 81, 78, 99, 171, 168, 113, 141, 162, 156, 159, 201, 198, 213, 342, 211, 336, 319, 219, 327, 226, 291, 233, 261, 282, 279, 324, 312, 309, 321, 318, 367, 339, 381, 402, 396, 399, 426, 423, 684, 422, 672, 421, 638, 649, 657, 441, 438, 453, 654, 452, 582, 451, 559, 459, 567, 466, 531, 473, 501, 522, 519, 564, 561, 558, 579, 651, 648, 593, 624, 621, 618, 749, 642, 641, 636, 633, 747, 734, 639, 669, 681, 678, 727, 699, 741, 762, 759, 804, 792, 789, 801, 798, 847, 819, 861
抵消
1,1
评论
请参阅数学部分中的dragun,以获得连续的、充满空间的Dragon函数及其多值逆函数的精确求值器。
对于分组的三元组,使用Dragon(A260748型(n) )=龙(A260749型(n) )=龙(A260750型(n) )。(也就是说,它们是“共形的”。)
链接
Brady Haran和Don Knuth,错误转向龙,数字视频(2014)
维基百科,龙形曲线
例子
为了明确起见,我们选择复杂平面中的龙,龙(0)=0,龙(1)=1,龙(1/3)=1/5+2i/5
然后使用A(1)=21,k=1,2,3,{德拉贡[21/30],德拉贡[201/60],德拉贡[21/120]}
->{{1/2+I/6}、{1/6+I/3}、}-1/12+I/4}}
这些有未绘制的反向图像/@First/@%
{{13/30, 7/10, 23/30}, {13/60, 7/20, 23/60}, {13/120, 7/40, 23/120}}
德拉贡[21/15/2^k]=德拉贡[13/15/2^k]=dragun[23/15/2|k],经验上=(2/3-I/3)(1/2+I/2)^k
数学
(*朱利安·齐格勒·亨茨*)
分段递归分形[x_,f_,which_,iters_,fns_]:=分段递归分形[x,g_,whit,iters,fns]=((分段递归分形[Px,h_,whis,iters、fns]:=块[{y},y/.求解[f[y]==h[y],y]]);并集@@((fns[[#]]/@piecwiserecursivefractal[iters[[#]][x],Composition[f,fns[#]],which,iters,fns]);
dragun[t]:=分段递归分形[t,恒等式,分段[{{1},0<=#<=1/2},{{2},1/2<=#<=1}},}]&,{2*#&,2*(1-#)&},(1+I)*#/2&,(I-1)*#/2+1&}]
解压缩[z_]:=分段递归分形[z,恒等式,如果[-(1/3)<=Re[#]<=7/6&&(1/3)<=Im[#]<=2/3,{1,2},{}]&,{#*(1-I)&,(1-#)*(1+I)&},}#/2&,1-#/2&}]
删除重复[Reap[Do[If[Length[#]>2,Sow[15*64*#[2]]]&@
脱下[德拉贡[k/15/64][1],{k,0,288*3}]][2,1]]
(*或128或256或…*)
关键词
非n
作者
高斯珀2015年7月30日
状态
经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人员OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2024年9月22日03:08。包含376090个序列。(在oeis4上运行。)