登录
数n,使121*2^n-1是素数。
1

%I#29 2020年12月12日01:42:15

%S 1,3,21,27,37,43,9111714116337342115812035107011893121307,

%电话:5119564579156541302097334257368059383061410131494317541621,

%电话:990219103996515260971589157169549919542432033941

%N数N,使得121*2^N-1是素数。

%C 4553899也在该序列中。-Felix Fröhlich,2014年7月4日

%H作者?,<a href=“https://web.archive.org/web/20110601231527/www.bodang.com/12121/“>12121搜索</a>[在Wayback Machine存档]。

%H Ray Ballinger和Wilfrid Keller,<a href=“http://www.prothsearch.com/riesel1.html“>k<300时的素数列表k.2^n+1</a>

%H Wilfrid Keller,<a href=“http://www.prothsearch.com/riesel2.html“>k<300的素数列表k.2^n-1</a>

%H Kosmaj,<a href=“http://www.15k.org/riesellist.html“>Riesel列表k<300</a>。

%H PrimeGrid,<a href=“http://www.primegrid.com/download/27121-4553899.pdf“>2014年7月4日发布n=4553899

%H<a href=“/index/Pri#riesel”>索引n序列的项,以便k*2^n-1(或k*2*n+1)是素数</a>

%t选择[Range[2500],PrimeQ[121*2^#-1]&](*_Michael De Vlieger_,2020年12月10日*)

%Y参考A032410。

%K硬,nonn

%O 1,2号机组

%A _N.J.A.Sloane,1999年12月29日

%E来自Herman Jamke(hermanjamke(AT)fastmail.fm)的更多术语,2008年1月2日