%I#6 2025年7月23日12:24:48
%S 129614400160000100000062500027562500121550625423536400,
%电话:147578905643370127361274550681632920473600085030560000,
%电话:1984702500004632503906259965030214358881000043112708496008670998958336
%N(N+1)X(3+1)0..2数组的数目,每行和每列中每两个连续值的和不递减。
%A250443的C列3
%H R.H.哈丁,<a href=“/A250438/b250438.txt”>n,a(n)表,n=1..210</a>
%F经验公式:a(n)=2*a(n-1)+14*a(n-2)-30*a(n-3)-90*a(ns-4)+210*a(-n-5)+350*a(n-6)-910*a(n-18)-10010*a(n-19)+2002*a-210*a(n-27)+90*a
%F关于n mod 2=0的经验公式:a(n)=(1/1358954496)*n^16+(5/84934656)*n*15+(31/14155776)*n ^14+(2135/42467328)*n′13+(33847/42467328)*n〃12+(32735/3538944)*n*11+(431429/5308416)*n〃10+(1463225/2654208)*n*n^9+(5160755/1769472)*n|8+(8008825/663552)*n^7+(12913699/331776)*n^6+(6965/72)*n*5+(139417/768)*n_4+(23855/96)*n_3+(3741/16)*n^2+135*n+36
%F关于n mod 2=1的经验公式:a(n)=(1/1358954496)*n^16+(5/84934656)*n=15+(373/169869312)*n*14+(1435/28311552)*n#13+(275299/339738624)*n_12+(807985/84934656)*n ^11+(14409143/169869312 990005/28311552)*编号7+(7598369275/169869312)*编号6+(9778683875/84934656)*n^5+(76415846875/339738624)*n^4+(9127365625/28311552)*n*3+(2011296875/6291456)*n=2+(616328125/3145728)*n+(937890625/16777216)
%e n=3的一些解
%e、。.0..1..0..1....0..0..1..1....0..0..0..2....0..0..1..0....0..0..0..1
%e、。.1..2..2..2....0..0..0..0....1..2..2..2....1..0..2..1....0..1..2..2
%e、。.0..1..0..1....0..1..2..2....2..2..2..2....0..2..2..2....1..0..2..2
%e、。.2..2..2..2....0..0..1..1....2..2..2..2....1..1..2..1....0..1..2..2
%K nonn公司
%O 1,1号机组
%A R.H.Hardin,2014年11月22日