这个网站是通过捐款来支持的。OEIS基金会是的。

盖尔方德常数

从奥伊斯维基
跳转到:航行我是说,搜索


这篇文章需要更多的工作。

请帮助扩大它!


盖尔方德常数,命名为亚历山大格尔丰

欧拉恒等式我是说,
eγγπ+ 1=0
我们有

盖尔方德常数是一个超越数是的。

盖尔方德常数的十进制展开

十进制扩展盖尔方德常数

A039 661十进制展开
eγπ
是的。
{ 2, 3, 1,4, 0, 6,9, 2, 6,3, 2, 7,7, 9, 2,6, 9, 0,0, 5, 7,2, 9, 0,8, 6, 3,6, 7, 9,4, 8, 5,4, 7, 3,4, 7, 3,y,y,y,y,y,y,y,y,y,y,y,y,y,…}

盖尔方德常数的连分数展开式

这个简单连分数扩展为盖尔方德常数

A05887连分数
eγπ
是的。
{ 23, 7, 9,3, 1, 1,591, 2, 9,1, 2, 34,1, 16, 1,30, 1, 1,4, 1, 2,108, 2, 2,1, 3, 1,7, 1, 2,2, 2, 1,2, 3, 2,2, 3, 2,y,y,y,y,y,y,y,y,γ,y,…}

盖尔方德常数π

迄今为止,还没有解释为什么。
eγπγ-επ
几乎相同
20个
是的。

盖尔方德常数π的小数展开

事实上

几乎整数被认为是一个数学巧合。

A018938十进制展开
eγπγ-επ
是的。
{ 1, 9, 9,9, 9, 0,9, 9, 9,7, 9, 1,8, 9, 4,7, 5, 7,6, 7, 2,6, 6, 4,4, 2, 9,8, 4, 6,6, 9, 0,4, 4, 4,4, 4, 4,y,y,y,y,y,y,y,y,y,y,y,y,y,…}

盖尔方德常数π的连分数展开式

这个简单连分数扩展为
eγπγ-επ
A018939连分数
eγπγ-επ
是的。
{ 19, 1, 1110,11, 1, 2,2, 2, 2,1, 61, 3,2083, 1, 2,1, 2, 3,1, 2, 9,2, 28, 1,3, 2, 2,10, 3, 1,3, 1, 1,1, 4, 14,1, 4, 14,y,y,y,y,y,y,y,y,γ,y,…}

盖尔方德常数的平方

这个盖尔方德常数的平方

我们有

盖尔方德常数平方的小数展开式

盖尔方德常数的平方的小数展开式

A216707十进制展开
e2π
是的。
{ 5, 3, 5,4, 9, 1,6, 5, 5,5, 2, 4,7, 6, 4,7, 3, 6,5, 0, 3,0, 4, 9,3, 2, 9,5, 8, 9,0, 4, 7,1, 8, 1,1, 8, 1,y,y,y,y,y,y,y,y,y,y,y,y,y,…}

另见