跳到主要内容
访问密钥 NCBI主页 MyNCBI主页 主要内容 主导航
iScience。2021年11月19日;24(11):103274。
2021年10月14日在线发布。 数字对象标识:2016年10月10日/j.isci.2021.103274
预防性维修识别码:项目管理委员会8567383
PMID:34761192

泛素化跨膜货物的HD-PTP和ESCRT-0相互依赖的内体分选需要内啡肽

关联数据

补充资料
数据可用性声明

总结

内化和泛素化的信号受体在运输(ESCRT)机械所需的内质体分选复合体的辅助下,通过其在管腔内萌芽进入多泡体而沉默。HD-PTP是一种ESCRT蛋白,与ESCRT-0、-I和-III蛋白形成复合物,并与Endofin结合,后者是一种限制在内切体中的FYVE域蛋白,其作用知之甚少。通过近距离生物素化,我们发现内啡肽与ESCRT成分形成复合物,内啡肽的缺失通过阻碍其溶酶体传递,增加了整合素α5和EGF受体的质膜密度和稳定性。这与持续的受体信号和增加的细胞迁移相一致。用野生型Endofin或HD-PTP补充Endofin-或HD-PTP-depleted细胞,但不与含有受损Endofin/HD-PTP关联或细胞溶质Endofin的突变体互补,恢复EGFR溶酶体递送。Endofin还促进Hrs与HD-PTP的间接相互作用。总之,我们的结果表明,HD-PTP和ESCRT-0对泛素化跨膜货物进行相互依赖的分类需要使用内啡肽,以确保有效的受体脱敏和溶酶体传递。

主题领域:生物科学、分子生物学、细胞生物学

集锦

  • 内啡肽与早期内吞体上的ESCRT蛋白和EGFR形成复合物
  • 激活EGFR和整合素α5溶酶体靶向性需要内啡肽
  • Endofin促进HD-PTP与ESCRT-0和-III在早期内体上的共定位
  • 内皮素耗竭增加细胞迁移并维持受体信号

生物科学;分子生物学;细胞生物学

介绍

受体信号传导是一个严格调控的细胞过程。配体活化受体被内吞并内化到内胚小室,在那里它们仍然是一个活跃的信号枢纽(Sorkin和von Zastrow,2009年). 在内胚体表面,跨膜货物通过不同的机械分离成不同的微区,决定货物的命运;向管胞循环或向溶酶体降解方向分类(Norris等人。,2017). 当受体被循环回到质膜(PM)时,就会发生受体再敏感。或者,当受体被定位于溶酶体降解时,信号终止。受体下调是通过其分选并并入管腔内小泡(ILV)形成多泡体(MVB)而启动的。这一过程是由运输(ESCRT)机械所需的内胚体分选复合体完成的。

ESCRT机制由五种负责ILV形成的蛋白质复合物组成。ESCRT-0、-I和-II蛋白被招募到内胚体膜,并直接与多单或多双蛋白化受体相互作用。ESCRT-III蛋白介导膜变形和断裂,而Vps4复合物负责ESCRT-IIII的分解及其再循环回细胞质(Christ等人。,2017;Vietri等人。,2020). MVB随后与溶酶体融合,其载物将被降解或胞吐。通过控制众多受体的命运,ESCRT蛋白是关键细胞过程(如细胞迁移和增殖)中细胞信号事件的关键调节器(Kharitidi等人。,2015;Miller等人。,2018;Szymanska等人。,2018;Toyoshima等人。,2007)以及消除错误折叠或损坏的PM蛋白(Okiyoneda等人。,2010).

同样,氯菊酯与ESCRT相关,在货物浓度和ILV形成中起关键作用(Wenzel等人。,2018;Raiborg等人。,2001,2006). 它被ESCRT-0蛋白Hrs招募到早期内体(Raiborg等人。,2001,2006). 原型表皮生长因子受体(EGFR)的静态和活细胞成像表明,ILV形成的初始步骤包括ESCRT-0、ESCRT-I、克拉通和HD-PTP募集波(Wenzel等人。,2018).

ESCRT蛋白HD-PTP(PTPN23型)被证明影响泛素化受体的降解,如TGFβ/BMP受体、PDGFRβ、EGFR、整合素、神经营养素和EphB2受体(Ali等人。,2013;Doyotte等人。,2008;Kharitidi等人。,2015;Ma等人。,2015;Miller等人。,2018;Stefani等人。,2011;Budzinska等人。,2020;Lahaie等人。,2019). HD-PTP直接与ESCRT-0、-I和-III蛋白结合,并有助于泛素化受体对MVB的内体分选和溶酶体降解(Ali等人。,2013;Doyotte等人。,2008;Gahloth等人。,2016,2017年b;Ichioka等人。,2007;Kharitidi等人。,2015). 在ILV形成的早期阶段,ESCRT-0、-I和HD-PTP的募集增加,直到ESCRT-III被募集,然后它们开始从内胚层膜分离(Wenzel等人。,2018). HD-PTP也可作为肿瘤抑制因子,其单倍体不足被证明可增加细胞迁移和侵袭(Manteghi等人。,2016). 救援实验进一步证明,HD-PTP的N末端包含Bro1和V结构域,足以恢复HD-PTP耗尽时观察到的大多数EGFR贩运缺陷(Doyotte等人。,2008). HD-PTP的这个最小功能单元确实保留了绑定泛素货物以及ESCRT机械的几个组件的能力,例如STAM2(ESCRT-0)和CHMP4B(ESCRT-III)(Desrochers等人。,2019;Gahloth等人。,2016,2017年b;Lee等人。,2016;Pashkova等人。,2013). 有趣的是,与STAM2和CHMP4B结合的HD-PTP的同一区域也能与内啡肽结合(ZFYVE16型) (Gahloth等人。,2017年b).

内皮素是一种由中央FYVE结构域组成的大蛋白,能够正确定位到早期内体的膜上,在那里可以与TGFβR1等受体形成复合物(Chen等人。,2007年a). 它也在FYVE域旁边显示Smad结合域,并被发现影响TGFβ和BMP信号(Chen等人。,2007年a;Goh等人。,2015;Shi等人。,2007). 此外,内啡肽的C末端直接与Tom1相互作用,Tom1是一种与网格蛋白和泛素化受体结合的蛋白质(Seet等人。,2004;Yamakami等人。,2003). 研究表明,内啡肽通过与Tom1的直接相互作用,向早期内啡体募集网格蛋白(Seet和Hong,2005年). 然而,对Endofin介导的网格蛋白招募对泛素化货物贩运的影响和意义仍知之甚少。

内毒素结合HD-PTP的亲和力高于STAM2和CHMP4B(Gahloth等人。,2017年a,2017年b). 因此,ESCRT蛋白之间对HD-PTP结合的竞争被认为干扰了受体与ESCRT组分结合并有效传递到溶酶体的能力(Gahloth等人。,2017年a;Lee等人。,2016). 内啡肽和HD-PTP之间的直接相互作用还表明,内啡肽在ESCRT依赖性受体运输和信号传递以及泛素化膜货物分拣中发挥着更广泛的作用。

这里,我们证明了整合素α5、EGFR和其他多-泛素化跨膜模型货物的ESCRT依赖性溶酶体分选需要内啡肽。我们认为,内啡肽允许HD-PTP与ESCRT-0相互作用和共定位,并促进氯氰菊酯向早期内体的补充。因此,内啡肽与HD-PTP结合的破坏足以严重损害ESCRT介导的溶酶体泛素化的囊泡分选。因此,内皮素耗竭导致持续的受体信号传导和细胞迁移增加。总之,本研究确定了内皮素是ESCRT依赖性受体转运和细胞信号传导的关键调节因子。

结果

内啡肽与ESCRT和EGF受体形成复合物

Endofin直接结合Tom1和HD-PTP,这两种物质在受体运输中都有直接作用(Doyotte等人。,2008;Gahloth等人。,2017年a;Katoh等人。,2004;Kharitidi等人。,2015;Seet等人。,2004;Yamakami等人。,2003). 内啡肽的相互作用组可能反映其功能;然而,它的特征仍然很差。为了进一步详细研究HD-PTP和Endofin的结合伙伴,设计了两个蛋白质组工作流程。首先,我们进行了邻近依赖性生物素标记(BioID),其中融合到HD-PTP和Endofin的N-或C-末端的生物素连接酶(BirA*)被用作“诱饵”,用生物素共价标记附近的蛋白质(“preys”),然后可以通过MS纯化和鉴定(Lambert等人。,2015). 随后,采用亲和纯化质谱(AP-MS)方法,诱导表达标记的HD-PTP和Endofin作为诱饵。我们的研究结果通过BioID和AP-MS揭示了Endofin是HD-PTP的一个强大的邻近相互作用物(图1A和S1(第一阶段)B) HD-PTP与来自不同ESCRT复合物(ESCRT-0、-I和-III)的多种ESCRT蛋白形成复合物(图1A) ●●●●。同样,HD-PTP被确定为Endofin-BirA的邻近相互作用物*(图1A) BioID未检测到Endofin和ESCRT蛋白之间的相互作用(图1A) AP-MS显示,各种ESCRT蛋白(HD-PTP、ESCRT-I和-III)与Endofin复合(图S1B) ●●●●。此外,我们的结果表明HD-PTP是氯氰菊酯重链1(CLTC)和细胞内更广泛的内吞和转运机制的强大相互作用体(图S1B) ●●●●。总的来说,这些蛋白质组分析表明,内啡肽和HD-PTP与内吞机制和ESCRT形成复合物(进一步注释于图S1A) ●●●●。为了更好地了解内啡肽在HD-PTP中的作用,使用STRING数据库对BioID数据进行了进一步分析,通过该数据库设计交互网络并将其聚集到不同的细胞过程中。为了支持我们的观察,Endofin的网络与受体贩运有关,这一发现与HD-PTP的发现类似(图S2第3章) (Doyotte等人。,2008).

保存图片、插图等的外部文件。对象名称为gr1.jpg

内啡肽与ESCRT和EGF受体形成复合物

(A) BioID屏幕的点图显示ESCRT蛋白与HD-PTP和Endofin非常接近。将标记生物素连接酶(BirA*)融合到HD-PTP和Endofin的N或C末端,并用作诱饵。将构建物转染到Flp-In T-REx 293T细胞中。点图中的填充阴影表示平均光谱计数(Avg Spec),点的大小表示所有猎物的相对丰度,外圆颜色表示BFDR值。

(B) 与模拟转染细胞相比,对瞬时转染myc-Endofin的293T细胞进行共免疫沉淀(Co-IP)。免疫沉淀Myc-Endofin(Myc抗体),用Western blots检测HD-PTP、ESCRT-0(Hrs和STAM2)和ESCRT-I(Tsg101和UBAP1)的co-IP。加载全细胞裂解液(WCL)以显示蛋白质含量。显示了小时的低暴露(LE)和高暴露(HE)免疫印迹。数据来自n=3个独立实验。

(C) TurboID屏幕的点图显示了在存在或不存在EGF刺激的情况下(100 ng/mL,15分钟),ESCRT蛋白和其他与内吞作用和EGFR激活密切相关的蛋白。将快速作用的miniTurbo生物素连接酶(MT)融合到EGFR(EGFR-MT)的C末端,并转染到Flp-In T-REx-HeLa细胞中,用作诱饵。

为了验证内吞素、HD-PTP和ESCRT在早期内吞体上形成复合物,对293T细胞器进行了等密度蔗糖梯度离心。虽然含有LAMP1和Tom20的细胞组分中不存在内啡肽和HD-PTP,但溶酶体和线粒体标记物分别不存在(图S1C) ,它们同时存在于含有ESCRT蛋白的细胞组分中(Hrs、Tsg101和UBAP1)。这些组分中也存在Tom1和早期内体标记EEA1。此外,亚细胞分馏后的尺寸排除色谱(HPLC)显示,内啡肽、HD-PTP和ESCRT-0组分(Hrs和STAM2)是525至927 kDa范围内的大蛋白复合物的一部分,但ESCRT-I组分Tsg101主要存在于分子量较低的复合物中(图S1D) ●●●●。作为与ESCRT蛋白复合物形成的进一步验证,对瞬时表达的myc-Endofin进行联合免疫沉淀。事实上,内啡肽与HD-PTP、ESCRT-0(Hrs和STAM2)和ESCRT-I(Tsg101和UBAP1)形成复合物(图1B) 其中STAM2、Tsg101和UBAP1直接与HD-PTP交互(Ali等人。,2013;Gahloth等人。,2016;Ichioka等人。,2007). 该数据进一步支持了内吞是早期内吞体上含有HD-PTP和ESCRT的复合物的一部分。

最后,我们使用MiniTurbo BioID探讨了EGFR激活是否会引发内啡肽募集,与BirA*酶相比,该酶可以缩短标记时间。结果表明,在EGF刺激下,内皮素和HD-PTP与常见的内吞机制一起迅速被招募到EGFR中(图1C) ●●●●。总之,这些数据表明,内啡肽与HD-PTP、ESCRT和EGFR形成复合物,表明内啡肽可能在调节受体贩运中发挥作用。

内皮素调节整合素α5和EGFR的质膜密度、稳定性和溶酶体降解

众所周知,HD-PTP在调节EGFR、整合素α5和PDGFRβ溶酶体内膜转运中起直接作用(Belle等人。,2015;Doyotte等人。,2008;Kharitidi等人。,2015). 由于Endofin直接与HD-PTP相互作用,并与不同的ESCRT形成复合物(Gahloth等人。,2017年b)和EGFR,我们想研究内啡肽在受体贩运中的作用。我们使用HD-PTP-depleted HeLa细胞作为阳性对照来阻断受体贩运(图S4A) ●●●●。HeLa细胞被shRNA清除Endofin-depleted,并感染非靶向shRNA(NT)作为耗尽的阴性对照(图S4A) ●●●●。对Endofin和HD-PTP-depleted细胞的总细胞裂解物进行Western blotting,结果显示整合素α5的细胞表达水平至少增加了2.5倍(图S4B) 和~EGFR水平增加1.2–1.6倍(图S4C) ●●●●。

几项研究表明,配体活化、泛素化和整合素α5和EGFR的内化促进了它们向溶酶体降解方向的分选(Alwan等人。,2003;Kharitidi等人。,2015;Lobert等人。,2010). 接下来,我们评估了与HD-PTP耗竭相比,Endofin耗竭对整合素α5和EGFR溶酶体降解动力学的影响。在环己酰亚胺(CHX)存在下,用纤维连接蛋白(3和6 h)或EGF(2和4 h)刺激血清饥饿的细胞以抑制蛋白质合成。为了抑制溶酶体降解,在CHX存在下用Bafilomycin A1预处理细胞(1 h)。Western blot显示,在内皮素和HD-PTP缺失后,6小时和2小时追踪后,整合素α5和EGFR的溶酶体降解分别延迟>60%和~40%(图2A) ,表明内皮素在整合素α5和EGFR溶酶体降解中发挥作用。

保存图片、插图等的外部文件。对象名称为gr2.jpg

内皮素介导整合素α5、EGFR和CD4多泛素化货物模型对溶酶体降解的有效分选

(A) Endofin-和HD-PTP-depleted HeLa细胞中总受体水平的整合素α5(左面板)和EGFR(右面板)环己酰亚胺追踪(10μg/mL CHX)。细胞需要血清(2 h),用CHX预处理(1 h),然后用纤维连接蛋白(10μg/mL FN,37°C)或EGF(50 ng/mL,37°C)激活受体。整合素α5被追踪0、3和6小时,而EGFR在CHX存在下追踪0、2和4小时。对照细胞也用Bafilomycin A1(200 nM Baf+CHX,1 h)预处理,以抑制溶酶体酸化,从而抑制溶酶体降解(6 h FN+Baf或4 h EGF+Baf)。对细胞提取物进行蛋白质印迹,以通过使用ImageJ软件的密度计分析来测量降解动力学。整合素α5和EGFR水平标准化为eEF2。

(B) 用细胞表面ELISA(cs-ELISA)测定HeLa细胞中整合素α5(左侧)和EGFR(右侧)质膜(PM)的稳定性。血清饥饿后,用纤维连接蛋白(10μg/mL FN,4 h,37°C)或EGF(50 ng/mL,20 min,37°C)激活受体。α5β1整合素阻断抗体(10μg/mL)和吉非替尼(2μM)作为阴性对照,阻断Endofin-depleted细胞的受体内化。对于每个细胞系,整合素α5和EGFR的水平绘制为细胞表面与未刺激细胞相比剩余的百分比。

(C) 在缺乏血清的HeLa细胞上进行cs-ELISA,以量化稳定状态下整合素α5(左侧面板)和EGFR(右侧面板)PM受体密度。将内皮素和HD-PTP-depleted细胞与对照NT细胞进行比较。

(D) (上面板)受体转运期间囊泡pH值变化的示意图(EE:早期内体,RE:再循环内体,LE:晚期内体,Lys:溶酶体)。(下面板)血清饥饿HeLa细胞中EGFR和整合素α5内吞动力学的FRIA分析。用FRIA测定内皮素、HD-PTP-和Hrs-depleted HeLa细胞与NT细胞中FITC-标记的EGFR-或整合素α5的内吞小泡的平均pH值。血清饥饿后,用EGF(50 ng/mL,30或60 min,37°C)或FN(10μg/mL,4 h,37°C)刺激细胞。

(E) 用CD4Tl(溶酶体降解受体分选阴性对照)或CD4Tl-泛素嵌合体(CD4T1-Ub,作为多泛素化货物的模型)瞬时转染内皮素和HD-PTP-depleted 293T细胞。用CHX(100μg/mL)预处理血清饥饿的293T细胞,以追踪CD4Tl和CD4Tl-Ub的总蛋白水平2 h。用ImageJ软件对细胞提取物进行蛋白质印迹(CD4抗体),以通过密度分析测量降解动力学。CD4Tl和CD4Tl-Ub水平归一化为eEF2。

(F和G)(F)在15、30、60和120分钟追踪(37°C)后,通过FRIA测定Endofin-depleted HeLa细胞与NT细胞中含有CD4Tl-Ub-和(G)CD4TCC-UbAllRΔG的内吞小泡的平均小泡pH值。CD4TCC-UbAllRΔG是四聚体单-泛素化货物的模型。数据为n≥3个独立实验的平均值±SEM。未配对学生t检验:*p<0.05,*p<0.01,***p<0.001。

考虑到ESCRT和泛素化跨膜蛋白之间的串扰,这些蛋白优先以溶酶体降解为目标,而不是再循环回PM,我们询问内皮素耗竭是否可以延迟激活受体的PM转换。通过细胞表面ELISA(cs-ELISA)分别在纤维连接蛋白(4h)和EGF(20min)刺激下测定活化整合素α5和EGFR的细胞表面稳定性。与NT细胞相比,约20%的整合素α5在PM处稳定,类似于整合素β5β1阻断抗体的作用,该抗体干扰受体的激活和内化(图2B) ●●●●。类似地,内皮素耗竭后,约20%的EGFR在PM稳定。吉非替尼(一种EGFR抑制剂,可阻断受体激活、泛素化和内化)的作用类似(图2B) ●●●●。值得注意的是,内皮素和HD-PTP耗竭对EGF刺激后EGFR的内化率没有影响(5分钟)(图S4D) ●●●●。此外,我们使用cs-ELISA测量了内毒素和HD-PTP耗竭后的稳态PM受体密度。与NT细胞相比,整合素α5和EGFR细胞表面密度增加了至少1.5倍(图2C) ●●●●。因此,内皮素耗竭可能会延迟整合素α5和EGFR的溶酶体降解,并通过促进早期内体水平的再循环增加其PM密度和稳定性。

内酯是有效溶酶体传递整合素α5和EGFR所必需的

如果整合素α5和EGFR的溶酶体降解在内皮素耗竭后延迟,则内皮素可能在ESCRT依赖性受体从早期内体向MVB和溶酶体的分选中发挥作用。因此,为了更好地了解内啡肽在溶酶体内转移动力学中的作用,通过监测含受体小泡的pH值(pH值)来确定溶酶体的受体传递v(v))通过荧光比率图像分析(FRIA)(图2D)(Barriere和Lukacs,2008年). HD-PTP和Hrs-depleted HeLa细胞(图S4A) 被用作阻断受体贩运的积极控制(Kharitidi等人。,2015;Wenzel等人。,2018). 首先,在冰上用抗EGFR或抗整合素α5标记缺乏血清的细胞,然后用F(ab')标记2与pH敏感的异硫氰酸荧光素(FITC)偶联的二级抗体。接下来,为了诱导同步的受体内化,用EGF(30和60分钟追逐,37°C)或纤维连接蛋白(4小时追逐,37℃)和pH值刺激细胞v(v)如预期,在HD-PTP和Hrs-depleted细胞(pH值v(v)~5.7±0.09和pHv(v)~5.7±0.1),与NT细胞(pHv(v)∼ 5.2 ± 0.07) (图2D和S4系列E) ●●●●。引人注目的是,在内皮素缺失细胞中追踪30分钟EGFR后,受体局限于早期内体(pHv(v)~6±0.17),然而,在NT细胞中,EGFR被传递到晚期内体(pHv(v)∼ 5.4 ± 0.07) (图2D和S4系列E) ●●●●。此外,60分钟追踪后,EGFR被传递到Endofin-depleted细胞(pHv(v)~5.4±0.23),而在NT细胞中,EGFR被传递到溶酶体(pHv(v)∼ 4.5 ± 0.1) (图2D和S4系列E) ●●●●。内皮素耗竭也抑制了整合素α5从早期内体(pH值v(v)~6.4±0.1),而在对照NT细胞中,受体被传递到晚期内体(pHv(v)∼ 5.7 ± 0.1) (图2D) ●●●●。FRIA结果清楚地表明,内啡肽在受体从早期内体向MVB和溶酶体的转运中起着关键作用。HD-PTP和Hrs耗竭对EGFR贩运的相同影响就是一个例证。

内酯是多泛素模型货物溶酶体高效输送所必需的

ESCRT对泛素化受体的识别是内化受体向MVB和溶酶体分选过程中的关键步骤。为了研究内啡肽是否也有助于无受体信号的泛素化货物的内溶酶体分选,我们使用了经过组成性多泛素化的CD4-Ub嵌合体。为此,使用了两种不同的模型受体。一个是截断的CD4(CD4Tl),其中细胞质尾部被删除并替换为连接子,因此缺少泛素受体位点和分选信号(Barriere等人。,2006). 此外,我们使用了CD4Tl-Ub,这是一种嵌合体,其中连接子已融合到泛素(Ub)部分。单个Ub部分与接头的融合足以诱导CD4Tl-Ub的组成型多泛素化,从而加速其ESCRT依赖性溶酶体的递送(Apaja等人。,2010;Barriere等人。,2007).

用CD4Tl和CD4Tl-Ub构建物瞬时转染内皮素和HD-PTP-depleted细胞,通过CHX追踪(2 h)评估其降解动力学。Western blotting表明,与NT细胞相比,内切芬和HD-PTP耗竭后,~40%CD4Tl-Ub的溶酶体降解延迟(图2E) ●●●●。正如预期的那样,内啡肽和HD-PTP缺乏对CD4Tl水平没有显著影响(图2E) ●●●●。此外,FRIA显示,内皮素耗竭将CD4Tl-Ub限制在再循环的内皮体内(pHv(v)~6.4±0.07)与NT细胞相比,NT细胞将其输送至溶酶体(pHv(v)~4.8±0.07)追逐2小时后(图2F) ●●●●。因此,即使在缺乏第二信使信号活动的情况下,内啡肽也是多-泛素化货物溶酶体高效降解所必需的。为了评估内啡肽依赖的内溶酶体分选是否优先于特定的泛素化产物,FRIA还测定了四聚体单-泛素化物(CD4TCC-UbAllRΔG)在内啡肽耗尽时的溶酶体递送。在CD4TCC UbAllRΔG中,在Ub部分之前插入四聚信号,Ub部分的所有七个Lys残基被Arg取代,羧基末端Gly残基被删除(Barriere等人。,2006). 与HD-PTP缺失对CD4TCC-UbAllRΔG贩运的影响一致(Kharitidi等人。,2015),内啡肽的消耗并不影响四聚体单-泛素化货物的贩运(图2G) 尽管之前已经证明四聚体单-双肽可以作为一种有效的内吞信号(Barriere等人。,2006). 这些数据表明,内啡肽不仅在EGFR和整合素α5的贩运中发挥作用,而且还调节多-泛素化货物向溶酶体降解的特定分类。

内啡肽耗竭减少氯氰菊酯向早期内体的补充

Endofin通过Tom1向早期内体招募网格蛋白(Seet和Hong,2005年)Tom1直接与Endofin和clathrin重链相互作用(Seet和Hong,2005年;Seet等人。,2004) (图S5C) ●●●●。我们的数据表明,在15分钟EGFR追踪后,氯氰菊酯与EGFR共定位达到峰值(~0.65±0.09)(图S5A和S5B)。为了更好地理解为什么内皮素耗竭后受体贩运会延迟,我们首先通过免疫荧光法评估了内皮素耗损对早期内体中氯氰菊酯补充的影响。用GTPase缺陷突变体Rab5Q79L瞬时转染内切酶缺失的HeLa细胞,以诱导扩大的内切体的形成(Raiborg等人。,2001;Wegener等人。,2010). 内皮素耗竭后,与NT细胞相比,网格蛋白募集减少了33%±3%(图S5D和S5E)。此外,我们评估了内啡肽缺失细胞中的Tom1与氯氰菊酯重链的相互作用,co-IP表明,随着内啡肽的缺失,氯氰菊酯与Tom1的相互作用减少(图S5F) ●●●●。因为在MVB生物发生过程中,氯菊酯对于内胚体表面的受体聚集及其在ILV中的积累是必不可少的(Wenzel等人。,2018),这可能导致EGFR溶酶体传递延迟。如Seet等人之前所述,为了模拟Tom1蛋白通过Endofin向早期内体募集。,我们使用了2xFYVE-Tom1嵌合体构建体来恢复Endofin缺失细胞中Tom1/网格蛋白的相互作用(Seet和Hong,2005年). 值得注意的是,在Endofin-depleted细胞中的2xFYVE-Tom1嵌合体一旦被表达,就缺乏与Endofin结合伙伴形成复合物的能力,包括HD-PTP。我们的结果表明,用2xFYVE-Tom1嵌合物补充Endofin-depleted HeLa细胞无法恢复EGFR溶酶体递送(图S5G) ●●●●。因此,尽管内啡肽耗竭减少了与Tom1的氯氰菊酯相互作用,并减少了氯氰菊酯向早期内体的补充,但内啡肽耗尽后EGFR溶酶体递送的延迟与内啡肽和Tom1之间相互作用的丧失或Tom1在受体贩运中的作用没有直接联系。

内皮素表达增强HD-PTP与EGFR、Hrs和CHMP4B的共定位

HD-PTP直接与ESCRT-0、-I和-III蛋白相互作用,促进EGFR向MVB的分选和溶酶体降解(Doyotte等人。,2008;Kharitidi等人。,2015). Endofin与HD-PTP的Bro1结构域结合,该结构域与STAM2(ESCRT-0)和CHMP4B(ESCRT-III)具有相同的结合位点,然而,Endofin结合HD-PTP具有比STAM2和CHMP4 B更高的亲和力(Gahloth等人。,2017年b). 此外,STAM2还与HD-PTP富含脯氨酸区域的基序结合,该基序是STAM2相互作用的第二个位点(Ali等人。,2013). 为了研究Endofin是否可以通过ESCRT调节HD-PTP复合物的形成,在Endofin-depleted细胞中免疫沉淀内源性HD-PTP,并评估ESCRT-0蛋白Hrs的co-IP效率。内皮素耗竭后,HD-PTP与Hrs的间接相互作用减少了约80%(图3A) ●●●●。

保存图片、插图等的外部文件。对象名称为gr3.jpg

Endofin促进HD-PTP与EGFR、Hrs和CHMP4B的共定位

(A) 在EGF刺激下(50 ng/mL,15 min,37°C),对对照组和Endofin-depleted 293T细胞进行Co-IP。免疫沉淀内源性HD-PTP,Western blotting评估Hrs的co-IP。加载全细胞裂解液(WCL 1%)以显示蛋白质含量。

(B–D)(B和C)利用HD-PTP对Endofin-depleted HeLa细胞中的EGFR(B)、Hrs(C)和CHMP4B(D)进行Colocalization分析。用EGF(50 ng/mL,5 min,37°C)刺激血清饥饿的细胞,然后在37°C下追踪EGFR 0,10,20和30 min。使用ImageJ软件(n=30)量化Mander的结肠化系数(MCC)。每个时间点都显示有代表性的免疫荧光图像。数据为n≥3个独立实验的平均值±SEM。未配对学生t检验:*p<0.05,*p<0.01,***p<0.001。

由于HD-PTP与早期内体上的ESCRT-0和-III的相互作用对于活化EGFR向MVB和溶酶体的分选至关重要(Ali等人。,2013) (Doyotte等人。,2008) (Wenzel等人。,2018),我们通过脉冲相实验评估了EGFR、红色荧光蛋白标记的Hrs(RFP-Hrs)和mCherry标记的CHMP4B(mCherry-CHMP4B)与HD-PTP在Endofin-depleted细胞中的共定位。与NT细胞(0.54±0.03)相比,经5分钟EGF刺激和10分钟EGFR追踪后,内皮素耗竭后EGFR与HD-PTP共定位显著降低(0.4±0.03(图3B) ●●●●。与co-IP结果一致,在5分钟EGF刺激和0分钟EGFR追踪后,与NT细胞(0.71±0.03)相比,内皮素耗竭后与HD-PTP共定位的Hrs显著降低(0.44±0.01)(图3C) ●●●●。此外,在5分钟EGF刺激和20分钟EGFR追踪后,与NT细胞(0.62±0.05)相比,内皮素耗竭后CHMP4B与HD-PTP的共定位也降低了(0.44±0.06)(图3D) ●●●●。因此,该数据表明,内皮素促进EGFR、ESCRT-0(Hrs)和ESCRT-III(CHMP4B)与HD-PTP的共定位和/或复合物形成,从而通过ESCRT依赖机制促进EGFR向MVB的分选和溶酶体降解。

接下来,还通过脉冲相实验评估了EGFR和RFP-Hrs与Endofin在HD-PTP-depleted细胞中的共定位。我们发现,在5分钟EGF刺激和20分钟EGFR追踪后HD-PTP耗竭后,EGFR和Hrs与Endofin的共定位稳定。然而,EGFR和Hrs在NT细胞中显示出与Endofin的动态共定位(图S6A和S6B)。这表明EGFR和Hrs与Endofin的动态共定位受HD-PTP调节。这种动态共定位可能反映了货物从早期内体向MVB和溶酶体的出口,这确实受到HD-PTP的调节(Doyotte等人。,2008). 另一方面,当HD-PTP耗尽时,EGFR和Hrs与Endofin的稳定共定位可能反映了从早期内体到MVB和溶酶体的货物分拣延迟。

内啡肽/HD-PTP相互作用可以有效地通过溶酶体传递活化的EGFR

内吞直接结合HD-PTP并将其招募到早期内吞体(Gahloth等人。,2017年b). 双L202D/I206D-HD-PTP突变可消除CHMP4B和Endofin与HD-PTP的结合,即使L202D/I206D-HD-PTP与myc-Endofin共表达,也可阻止L202D/I 206D-HD-PTP向早期内体募集(Gahloth等人。,2017年b). 我们的数据表明,EGFR和ESCRT-0与HD-PTP共定位被Endofin稳定。为了评估Endofin/HD-PTP相互作用在调节MVBs和溶酶体货物分拣中的功能方面,我们产生了shRNA抗性野生型(WT)和突变Endofin构建体。

FYVE结构域C753S Endofin突变体的瞬时过表达显示早期内体的定位受损,我们在这里对此进行了回应(图S6C)(Seet和Hong,2001年). 削弱内啡肽与HD-PTP Bro1结构域的相互作用(Gahloth等人。,2017年a),我们采用L15P-内啡肽突变体。

研究内皮素互补对EGFR内溶酶体转运、pH值的影响v(v)FRIA监测含EGFR的囊泡。用WT-或突变的Endofin瞬时转染Endofin-depleted HeLa细胞(图S6D) 和平均pH值v(v)在EGF刺激30分钟后进行评估。WT-Endofin互补恢复EGFR溶酶体递送(平均pHv(v)~5.1±0.03)与模拟转染的Endofin-depleted细胞(平均pH值v(v)~5.9±0.09)和NT细胞(平均pHv(v)∼ 5.3 ± 0.04) (图4A) ●●●●。L15P-内啡肽互补部分恢复EGFR溶酶体递送(平均pHv(v)~5.5±0.02),与WT-Endofin相比(图4A) 与L15P-Endofin与HD-PTP的部分生物化学相互作用被破坏相一致(图S6E) ●●●●。相反,C753S-内啡互补完全不能挽救EGFR溶酶体递送(平均pHv(v)∼ 5.9 ± 0.05) (图4A) 通过大幅减少早期内吞体对内吞素的补充。

保存图片、插图等的外部文件。对象名称为gr4.jpg

内啡肽/HD-PTP相互作用可以有效地通过溶酶体传递活化的EGFR

(A和B)在(A)用mCherry质粒和Flag标记的WT-、L15P-或C753S Endofin构建体瞬时共转染的Endofin耗竭的HeLa细胞中,在EGFR追逐(50 ng/mL EGF,37°C)30分钟后,通过FRIA测定的含有FITC标记的EGFR的内吞囊泡的平均囊泡pH,或(B)HD-PTP-depleted HeLa细胞与mCherry质粒、WT-或T145K-HD-PTP瞬时共转染(干扰HD-PTP与Endofin的相互作用)构建物。对表达mCherry的细胞进行单细胞FRIA分析(囊泡:n>190,显微镜视野:n>10)。绘制了EGFR追踪30分钟后内化EGFR的水泡pH分布。结果表明,NT、shEndofin、WT-Endofin、L15P-Endofen、C753S-Endofein、shHD-PTP-和T145K-HD-PTP-HeLa细胞中不同峰的平均囊泡pH值和囊泡数量。

(C) BioID屏幕的点图显示与泛素化(Ub)和早期内体(EE)相关的蛋白质与WT-Endofin和C753S-Endofin非常接近。将标记生物素连接酶(BirA*)融合到WT-Endofin和C753S-Endofin的N末端,并用作诱饵。将构建物转染到Flp-In T-REx 293T细胞中。点图中的填充阴影表示平均光谱计数(Avg Spec),点的大小表示所有猎物的相对丰度,外圆颜色表示BFDR值。数据为n≥3个独立实验的平均值±SEM。未配对学生t检验:*p<0.05,*p<0.01,***p<0.001。

重要的是,用WT-HD-PTP补充HD PTP耗竭的HeLa细胞(图S6D) 恢复EGFR溶酶体输送(平均pHv(v)∼ 5.4 ± 0.15) (图4B) ●●●●。T145K-HD-PTP,部分破坏HD-PTP/内啡相互作用(图S6F)(Gahloth等人。,2017年c),未能挽救EGFR溶酶体输送(平均pHv(v)~5.9±0.05)与模拟转染HD-PTP-depleted(平均pHv(v)~6.1±0.08)和NT(平均pHv(v)~5.4±0.09)个电池(图4B) ●●●●。

为了更好地理解Endofin的FYVE结构域影响HD-PTP向早期内体募集的机制,我们将我们的BioID研究扩展到C753S-Endofin-N-末端BirA*标记毒饵。与我们的研究结果一致,FYVE结构域的破坏并没有减少内皮素与HD-PTP的相互作用,但确实破坏了其与泛素和一些早期内体成分的邻近相互作用,深入了解内吞素支持HD-PTP在内吞囊泡上向泛素化货物募集的潜在机制(图4C) ●●●●。这些结果强烈表明,通过FYVE结构域在早期内体上定位内啡肽及其与HD-PTP的相互作用对于有效的激活EGFR内溶酶体转移是必要的。

内皮素耗竭维持整合素α5和EGFR下游信号

我们之前的研究表明PTPN23型常见于几种人类癌症(Manteghi等人。,2016). 使用cBioPortal数据库,我们在这里显示ZFYVE16型(内啡肽基因)在几种人类癌症中也很常见(图5A) ●●●●。此外,PRECOG数据库通过计算Z评分来衡量mRNA表达谱与癌症预后之间的关系,结果显示Z评分为负ZFYVE16型几种人类癌症的mRNA表达(图5B) ●●●●。

保存图片、插图等的外部文件。对象名称为gr5.jpg

内皮素耗竭维持整合素α5和EGFR下游信号传导并增加细胞迁移

(A) 杂合性缺失频率ZFYVE16型不同类型癌症患者的(内啡肽基因)。从cBioPortal数据库中提取数据并绘制为ZFYVE16型杂合性丢失。

(B) 不同类型癌症患者内啡肽Z评分分析。从PRECOG数据库中提取并绘制每种癌症类型的Endofin Z评分。

(C) Western blot显示在纤维连接蛋白刺激后(10μg/mL FN,7 h,37°C),内皮素和HD-PTP-depleted HeLa细胞与NT细胞中整合素α5受体下游效应器的磷酸化水平:FAK、Src和Erk1/2。eEF2螺栓用作加载控制。

(D) 用EGF(5 ng/mL,37°C)刺激内皮素和HD PTP耗竭的HeLa细胞(与NT细胞相比)0、15、30和60分钟。进行蛋白质印迹以揭示EGFR的磷酸化状态(左图)及其下游效应物MEK(右图)。eEF2印迹用作加载对照。

(E) 实时细胞分析(RTCA)测量内皮素和HD-PTP缺失HeLa细胞与NT细胞的细胞迁移。添加10%FBS的细胞培养基被用作化学引诱剂来触发细胞迁移。使用无血清培养基(不含化学引诱剂)作为阴性对照。使用整合素α5β1阻断抗体(10μg/mL)作为阴性对照,以抑制Endofin-depleted细胞中的细胞迁移。

(F) 用非靶向(NT)shRNA或HD-PTP shRNA瞬时转染Endofin-depleted或对照HeLa细胞。通过Western blotting评估受体水平,并使用ImageJ软件通过密度分析进行量化。

(G) 如(E)所示进行实时细胞分析,以比较瞬时转染HD-PTP shRNA或NT对照的Endofin-depleted细胞的迁移率。数据为n≥3个独立实验的平均值±SEM。未配对学生t检验:*p<0.05,*p<0.01,***p<0.001。

细胞表面受体能够在ILV形成之前从早期内体或MVB发出信号(Mamiñska等人。,2016;Rodahl等人。,2009;Wegner等人。,2011). 此外,HD-PTP缺失可延迟整合素α5溶酶体的传递,从而增加其下游信号传导(Kharitidi等人。,2015). 为了研究内皮素是否也影响整合素α5信号传导,用纤维连接蛋白刺激内皮素和HD-PTP-depleted HeLa细胞(7 h),通过Western blotting评估磷酸化FAK、Src和Erk1/2的水平。与我们之前的研究一致,在稳态和纤维连接蛋白刺激下,与NT细胞相比,缺乏血清的细胞中HD-PTP的缺失增加了pFAK、pSrc和pErk1/2的水平(图5C) ●●●●。值得注意的是,在内皮素耗竭时也观察到了同样的效果(图5C) ●●●●。这一结果清楚地表明,除了受体稳定外,内皮素耗竭还进一步增加了整合素α5信号传导。

接下来,评估内皮素和HD-PTP耗竭对EGFR激活及其下游信号动力学的影响。有趣的是,内皮素和HD-PTP的缺失对稳态EGFR磷酸化及其下游激酶MEK的激活没有显著影响(图5D) ●●●●。然而,在内皮素和HD-PTP耗竭后,EGF刺激30分钟后,EGFR和MEK均持续激活。即使在EGF刺激60分钟后,这些细胞中的pEGFR水平仍然较高(图5D) ●●●●。总之,这些结果表明,内啡肽和HD-PTP不仅调节EGFR和整合素α5质膜稳定性,而且还控制受体激活及其下游信号传导。

内皮素耗竭增加细胞迁移

整合素α5β1在细胞迁移中的中心作用及其依赖于ESCRT的溶酶体脱敏已得到充分证实(Kharitidi等人。,2015;Lobert等人。,2010). 采用实时细胞分析(RTCA)方法,以胎牛血清为化学引诱剂,测定了Endofin-depleted HeLa细胞的迁移率。与NT细胞相比,内皮素耗竭对细胞迁移率的影响与HD-PTP耗竭的影响相同,增加了约2倍。整合素α5β1阻断抗体抑制内皮素缺失细胞的迁移(图5E) ●●●●。这表明,内皮素耗竭后细胞迁移的增加与PM和总整合素α5水平的增加有关(图2C和S4系列B) ●●●●。

由于Endofin/HD-PTP相互作用允许有效的溶酶体递送活化的EGFR(图4B和4C),我们接下来讨论了Endofin和HD-PTP的同时耗竭是否会进一步损害受体运输。因此,我们比较了用非靶向shRNA或靶向HD-PTP的shRNA瞬时转染NT和Endofin-depleted细胞的总EGFR和整合素α5水平。我们发现,与NT细胞相比,耗尽Endofin或HD-PTP使EGFR总水平分别增加了约2倍和约1.5倍,而双敲除细胞中的EGFR水平增加了约2.7倍(图5F) ●●●●。有趣的是,对整合素α5的影响更为显著。事实上,单独消耗内皮素或HD-PTP使整合素α5水平分别增加了约3.4倍和约2.7倍,而双敲除细胞与NT细胞相比增加了约7.7倍(图5F) ●●●●。为了解决这些发现的功能相关性,我们还使用胎牛血清作为化学引诱剂进行了迁移分析。结果表明,与Endofin-depleted细胞相比,双敲除细胞的迁移率增加了约1.5倍(图5G) ●●●●。总之,这些结果表明,内啡肽和HD-PTP的同时消耗对总受体水平有加性影响,这反过来又增加了它们相对于内啡肽缺失细胞的迁移率。

在某些类型的人类癌症中,整合素α5和EGFR是众所周知的肿瘤发生驱动因素。在这里,我们表明,内皮素缺乏增加了整合素α5和EGFR信号和细胞迁移,这是癌症进展的两个标志。因此,内皮素表达的缺失延迟了受体溶酶体降解,增加了受体信号和细胞迁移,这可能最终导致肿瘤发生和癌症进展。

讨论

在这里,我们揭示了内啡肽在促进早期内胚体上与ESCRT-0形成HD-PTP复合物中的作用,以确保内化和泛素化细胞表面受体和其他跨膜物质的高效ESCRT依赖性溶酶体降解,这一过程也会使活化受体脱敏(Wegner等人。,2011),控制细胞迁移(Kharitidi等人。,2015;Lobert等人。,2010;Lobert和Stenmark,2012年)和PM蛋白质组(Apaja和Lukacs,2014年). 我们的研究结果可概括如下:1)内皮素在早期内体上与ESCRT和HD-PTP蛋白以及EGFR形成复合物。2) 激活的EGFR高效溶酶体递送需要FYVE域依赖的内皮素和HD-PTP的内体系链,而内皮素的细胞溶质重定位或阻止其与HD-PTP关联会影响EGFR的有效递送。3) 内啡肽对于缺乏信号传递能力的模型跨膜货物的多-单-单-双肽溶酶体而非多-单蛋白溶酶体递送也至关重要。4) 内皮素耗竭,与HD-PTP单倍体不足相似,EGF和整合素α5受体信号持续,细胞迁移增加。

内化的跨膜货物在早期内体上分离成不同的微结构域,这是由特定的分选基序引导的,朝向管状-杆状循环途径,逆向运输到高尔基复合体,或朝向MVB/溶酶体降解(Norris等人。,2017). 在配体刺激下,EGFR同时经历K63多泛素化和多单泛素化(Huang等人。,2006)而整合素α5β1是多泛素化的(Kharitidi等人。,2015;Lobert等人。,2010)作为内化和内溶酶体分选信号(Piper等人。,2014). 泛素化货物通过ESCRT-0和-I蛋白的多个低亲和力泛素结合域协同识别,包括Hrs、STAM2、UBAP1和Tsg101,它们集中在双层网格蛋白外壳(Agromayor等人。,2012;巴赫等人。,2003;Raiborg等人。,2002;Sundquist等人。,2004). 此外,内啡肽的结合伙伴Tom1和HD-PTP可以分别通过其GAT+VHS-和V-结构域识别多和单-泛素化部分,促进早期内啡肽体限制膜上的货物浓度(Akutsu等人。,2005;Pashkova等人。,2013;Wang等人。,2010).

而活化受体的溶酶体分选和MVB生物发生需要HD-PTP与STAM2、Tsg101、UBAP1和CHMP4B的动态相互作用(Ali等人。,2013;Gahloth等人。,2016,2017年b;Ichioka等人。,2007)在这个过程中,内啡肽的功能意义仍然是个谜(Gahloth等人。,2017年b). 由于与Tom1形成的内皮素复合物招募了氯氰菊酯,并直接或通过Tollip与早期内体上的泛素结合(Katoh等人。,2004;Seet和Hong,2005年;Seet等人。,2004),我们假设内啡肽可能参与泛素化货物的内体分选。Endofin在TGFβ/BMP信号传导中的作用也支持这种可能性(Chen等人。,2007年a;Shi等人。,2007)与ESCRT-I(UBAP1、TSG101、Vps37A、Vps28)形成的内啡肽复合物(图S1B) ●●●●。通过内吞消融稳定EGF和整合素α5受体的PM/内吞池,揭示了内吞相互作用网络的功能(图2),复制HD-PTP、Hrs或Tsg101耗竭的后果(Ali等人。,2013;巴赫等人。,2006;Doyotte等人。,2008;Kharitidi等人。,2015;Lu等人。,2003;Ma等人。,2015;帕金森等人。,2015;Wenzel等人。,2018). 虽然EGFR的内化仍然没有因内啡肽的缺失而改变,但它诱导了早期内体和PM中的受体积累,可能是通过促进其再循环。HD-PTP耗竭后,还观察到内部化整合素α5β1的加速再循环(Kharitidi等人。,2015).

众所周知,氯菊酯通过两种不同的氯菊酯结合蛋白Hrs和Tom1被招募到早期内体中(Raiborg等人。,2001;Seet和Hong,2005年). 网格蛋白在早期内体上的动态组装和分解对于货物和ESCRT-0聚集成微区以及随后ILV的形成至关重要(Raiborg等人。,2001;Sachse等人。,2002;Wegner等人。,2011;Wenzel等人。,2018). Endofin通过Tom1在双层网格蛋白形成中的重要贡献(Seet和Hong,2005年)然而,由于2xFYVE-Tom1嵌合体未能在Endofin-depleted细胞中拯救EGFR溶酶体递送,因此可以排除。我们支持Endofin与HD-PTP结合的模型(Gahloth等人。,2017年b)也可能促进EGFR从ESCRT-0(Hrs和STAM2)转移到ESCRT-I和-III,作为MVB/溶酶体递送的前奏(Ali等人。,2013). 作为支持,酵母HD-PTP同源物Bro1也与氯氰菊酯结合(Pashkova等人。,2013)与我们的观察一致,AP-MS显示HD-PTP最热门的相互作用物是氯菊酯(图S1B) ●●●●。因此,内皮素/HD-PTP在早期内体上的相互作用可能是将EGFR分类为溶酶体降解的关键事件,我们与内皮素和HD-PTP变体的互补证明了这一点,其中内皮素FYVE-domain的缺失也抑制了HD-PTP向早期内体的补充。总之,L202D/I206D-HD-PTP变异体的表达缺乏内啡肽和CHMP4B结合,即使与myc-Endofin共表达,也阻止了HD-PTP向早期内啡体的募集(Gahloth等人。,2017年c).

考虑到配体刺激的多泛素化是整合素α5和EGFR与ESCRT机制结合的关键识别信号(Eden等人。,2012;Kharitidi等人。,2015;Lobert等人。,2010)我们认为,动态的Endofin-ESCRT关联是将一组泛素化货物分子从早期内体路由到MVB/溶酶体的前提条件,而不依赖于受体下游信号。这一推论得到了多-泛素化(CD4Tl-Ub)模型货物的内皮依赖性溶酶体递送,而非四聚体单-泛素(CD4TCC-UbAllRΔG)的支持(图2F和2G)、单-泛素化(CD4Tl-UbRΔG)或缺乏泛素受体位点的CD4Tl模型货物(Barriere等人。,2006,2007). 这些结果也增加了ESCRT机制驱动的泛素链选择性可能受ESCRT复合物组成(包括Endofin)影响的可能性。这一推论与内皮素依赖性调节TGFβ/BMP受体一致,该受体经历配体诱导的K63多泛素化(Chen等人。,2007年a;艾扬格,2017年). 因此,肿瘤细胞内的内啡肽下调可能会在泛素链修饰之前,不同程度地改变细胞表面受体蛋白质组和信号传递,进而干扰下游信号级联和转录途径。

在MVB生物发生过程中,当受体萌芽到ILV时,内化受体的内体信号终止(普拉塔和斯坦马克,2011年;Wegner等人。,2011). 整合素α5β1和EGFR非受控信号在细胞迁移和肿瘤转移中起主要作用(Mierke等人。,2011;山口等。,2005). 内皮素耗竭后整合素α5和EGFR的持续信号传导可能与早期内体EGFR的积累及其延迟的MVB/溶酶体分选有关(图2D) ●●●●。此外,阻断整合素α5β1的激活和偶联泛素化(Kharitidi等人。,2015)证明整合素α5的PM水平升高至少部分是细胞迁移加速的原因(图5E) ●●●●。增强PM表达和整合素α5下游信号传导也与HD-PTP耗竭后加速细胞迁移有关(Kharitidi等人。,2015)与内皮素/HD-PTP相互作用在调节ESCRT依赖性受体贩运、受体信号传递和细胞迁移中的重要性一致。

研究表明,Hrs和STAM2与Endofin类似,在EGF刺激下进行磷酸化(Chen等人。,2007年b;Pandey等人。,2000;Row等人。,2005). 内化受体的分类触发Hrs磷酸化,促进其与早期内体的错位(Urbé等人。,2000). 根据已发表的数据和我们的研究结果,我们提出了以下关于内皮素在配体活化和泛素化细胞表面受体的溶酶体内转运中的作用的工作模型。内啡肽通过其FYVE依赖性内吞体定位和与HD-PTP结合,促进HD-PTP识别与STAM2和Hrs(ESCRT-0)复合物中的泛素化内吞体货物,以及内吞体微域中的货物聚集。内啡肽与HD-PTP(和STAM2)的后续分离通过目前尚不清楚的机制使CHIMP4B/HD-PTP结合。我们推测,翻译后修饰有利于内啡肽/HD-PTP的解离,类似于磷酸化诱导的Hrs从内切体解离,可能促进了这一过程(Urbé等人。,2000). 此外,货物装载和ESCRT-0/-I与HD-PTP的组装可能导致变构内啡肽从复合物中分离。通过监测荧光标记HD-PTP与其他ESCRT的募集动力学来测试和完善该模型,该动力学与Wenzel等人在货物分选过程中通过活细胞成像发现的内啡肽变体相关,并与早期内啡肽的协同ESCRT和氯氰菊酯募集波相关。(Wenzel等人。,2018). 此外,内啡肽同源物SARA蛋白也直接与HD-PTP结合,并向早期内啡体募集(Gahloth等人。,2017年b)在Endofin-depleted环境中可能充当补偿机制。总之,我们认为,在早期内体上,HD-PTP介导的货物从ESCRT-0/-I转移到ESCRT-III需要内啡肽,这是多-双肽货物溶酶体输送的关键步骤(图6).

保存图片、插图等的外部文件。对象名称为gr6.jpg

内皮素在受体贩运中的作用示意图模型

内化受体靶向野生型细胞(WT)中的早期内体后,内吞通过其FYVE域及其直接相互作用将HD-PTP招募到早期内体。内皮素通过STAM2与HD-PTP富含脯氨酸的区域结合,促进HD-PTP与早期内体上的ESCRT-0的相互作用。接下来,Endofin可能发生变构构象修饰(可能通过翻译后修饰),这削弱了Endofin/HD-PTP的结合,并促进了HD-PTP/CHMP4B的相互作用。最终,这导致EGFR向MVB和溶酶体降解的高效ESCRT依赖性排序。另一方面,在Endofin-depleted cells(shEndofin)中,HD-PTP与ESCRT-0的相互作用减少,这有利于受体再循环回质膜,并延迟ESCRT依赖的EGFR向MVB的分选和溶酶体降解。

内皮素/HD-PTP相互作用的中断(例如,通过内皮素突变体或PTPN23型单倍体不足)导致持续的EGF和整合素α5受体信号(图5) (Kharitidi等人。,2015;Manteghi等人。,2016)包括下游转录激活,已知可促进肿瘤发生和癌症进展(Hou等人。,2020;Sigismund等人。,2018). 杂合性缺失ZFYVE16型以及几种人类癌症中内皮素转录物的下调(图5)表明内啡肽可能发挥肿瘤抑制活性,这需要进一步研究。

研究的局限性

在本研究中,我们描述了内皮素在靶向整合素α5和EGFR以促进溶酶体降解,从而调节受体信号和细胞迁移方面的作用。我们还表明,高效EGFR溶酶体递送需要内啡肽来实现HD-PTP与ESCRT-0/-III的结合。然而,早期内吞体与HD-PTP、ESCRT和网格蛋白复合体结合/分离的确切机制尚不清楚。对于需要先进成像技术和蛋白质结构分析的未来研究来说,这将是一个有趣的方向。

此外,还不完全清楚Endofin是否调节所有细胞表面受体在激活后进行多泛素化的内切/溶酶体传递。需要进行进一步的研究,以解决内皮素耗竭对全球细胞表面蛋白质组的影响,这可能会进一步影响下游转录途径。

STAR公司方法

关键资源表

试剂或资源来源标识符
抗体

内啡肽蛋白质技术13118-2-美联社
HD-PTP(HD-PTP)蛋白质技术10472-1-美联社
Myc-Tag公司细胞信号2276
高分辨率分光计蛋白质技术10390-1-美联社
STAM公司蛋白质技术12434-1-美联社
Tsg101型蛋白质技术14497-1-美联社
UBAP1公司蛋白质技术12385-1-美联社
电压37A蛋白质技术11870-1-美联社
CHMP4B型蛋白质技术13683-1-美联社
用于WB和IP的EGFR(A-10)圣克鲁斯钪-373746
EGFR(ICR10)用于cs-ELISA、IF和FRIA阿布卡姆抗体231
用于WB的整合素a5蛋白质技术10569-1-美联社
整合素a5用于cs-ELISA和FRIABD Pharmingen公司555651
抗人整合素a5b1Millipore公司1969年5月
用于WB的CD4(H370)圣克鲁斯Sc-7219号
用于FRIA的CD4(OKT4)Invitrogen公司14-0048-82
标记标签(M2)西格玛1804层
电子EF2细胞信号2332
a-管蛋白西格玛T6074型
氯菊酯(X22)阿布卡姆Ab2731号
欧洲经济区1Invitrogen公司14-9114-82
抗大鼠HRP F(ab')2杰克逊免疫研究712-036-153
抗鼠HRP F(ab')2杰克逊免疫研究115-036-003
抗鼠FITC F(ab')2杰克逊免疫研究712-096-150
防鼠AF488Invitrogen公司A-28175
抗鼠AF594Invitrogen公司A-11032号
抗兔AF488Invitrogen公司A-27034号
抗兔AF594Invitrogen公司A-11012号文件
抗鼠AF647Invitrogen公司A-21247

化学品、肽和重组蛋白质

重组人表皮生长因子吉布科PHG0311电话
人血浆纤维结合蛋白吉布科33016-015
环己酰亚胺西格玛66-81-9
巴菲尔霉素A1西格玛B1793号
CCCP公司西格玛C2759元
莫能新钠西格玛M5273型
尼日利亚菌素钠盐西格玛N7143号
Amplex红色Invitrogen公司A12222号

存放的数据

AP-MS数据https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp质量:MSV00087704
BirA BioID MSPLIT数据https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp质量:MSV00087705
MiniTurbo BioID MSPLIT数据https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp质量:MSV00087706

实验模型:细胞系

赫拉NT暂停实验室
HeLa sh54内啡肽暂停实验室
HeLa sh75内啡肽暂停实验室
希拉sh47HD-PTP暂停实验室
HeLa sh51HD PTP公司暂停实验室
希拉sh98小时暂停实验室
293T北卡罗来纳州暂停实验室
293T sh54内啡暂停实验室
293T sh75内啡暂停实验室
293T sh47HD-PTP暂停实验室

寡核苷酸

有关克隆和突变引物的详细信息,请参阅表S1

重组DNA

pcDNA3-Flag-Endofin公司暂停实验室
pcDNA3-Flag-内啡抗shRNA54暂停实验室
pcDNA3-Flag-L15P-抗shRNA54的内啡肽暂停实验室
pcDNA3-Flag-C753S-内啡抗shRNA54暂停实验室
pcDNA3-Flag-HD-PTP暂停实验室
pcDNA3-Flag-HD-PTP抗shRNA47暂停实验室
pcDNA3-Flag-T145K-HD-PTP抗shRNA47暂停实验室
pcDNA3-CD4Tl卢卡奇实验室
pcDNA3-CD4Tl-Ub卢卡奇实验室
pcDNA3-CD4TCC-UbAllRΔG卢卡奇实验室

软件和算法

MetaMorph/MetaFluor软件分子器件
原始软件原始实验室https://www.originlab.com/
ImageJ软件https://imagej.nih.gov/ij/

资源可用性

引线触点

有关资源和试剂的更多信息和请求应发送给首席联系人Arnim Pause,并由其完成(arnim.pause@mcgill.ca公司).

材料可用性

本研究中产生的质粒和细胞系可从导线接触中获得。

实验模型和主题细节

细胞系

内皮素和HD-PTP-depleted HeLa和293T细胞是从ATCC购买的野生型细胞中生成的。本研究中产生的所有细胞系均列于密钥资源表并可根据要求从潜在联系人处获得。

方法详细信息

构筑物、试剂和细胞培养

Myc-tagged Endofin是王博士送的一份礼物(Seet和Hong,2001年). 以myc-Endofin为模板,通过PCR扩增产生pcDNA3-Flag-Endofin。pcDNA3-Flag-Endofin对shRNA54具有抗性,通过诱变在shRNA靶向区域引入沉默点突变产生。该构建物用于创建从BioBasic获得的C753S和L15P Endofin突变体。Gingras等人之前描述了pcDNA3.1中的标记HD-PTP。(Gingras等人。,2009). pcDNA3-Flag-HD-PTP对shRNA47产生抗性,通过诱变在shRNA靶区引入沉默突变。进一步对该结构进行突变,获得T145K HD-PTP突变体(BioBasic)。FYVE-Tom1嵌合体是在pcDNA3-Flag载体中通过子克隆Endofin FYVE结构域编码区的串联重复序列以及Tom1(Biomatik)的连接子和编码序列而生成的。如Barriere et al。(Barriere等人。,2006). pCS2-RFP-Hrs是E.M.De Robertis博士的礼物(Addgene质粒#29685)。pLNCX2-mCherry-CHMP4B是S.Simon博士的礼物(Addgene质粒#116923)。引物的完整列表包含在表S1.

HeLa(ATCC®CCL-2™)和293T(ATCC™CRL-3216™)细胞在DMEM、10%FBS(Wisent)中培养。人类内啡肽MISSION®shRNA慢病毒质粒pLKO.1-puro(克隆ID:NM_014733号.2-4263s1c1(第54页),NM_014733号.3-3858s21c1(sh75)),人类HD-PTP(克隆ID:NM_015466号.x-571s1c1(第47页),NM_015466号.x-887s1c1(sh51)),人时(克隆ID:NM_004712号.3-494s1c1(sh98))和空载体(MISSION®pLKO.1-uro空载体对照质粒DNA,SHC001)购自Sigma。

本研究中使用的抗体的完整列表包含在密钥资源表进行了补充实验通过根据制造商的说明,使用Lipofectamine 2000(Invitrogen)进行瞬时转染。本研究中使用的试剂的完整列表包括在密钥资源表.

AP-MS克隆、稳定细胞系生成和样品采集

通过Gateway克隆将ORF转移到N末端3XFLAG哺乳动物表达载体中,用于等基因稳定细胞系的生成和四环素诱导表达。根据制造商的说明,使用脂质体2000(Invitrogen)以6孔格式转染Flip-In T-REx 293T细胞,其中含有0.2μg标记DNA(pcDNA5-FLAG蛋白)和2μg pOG44(OpenFreezer V4134)。第2天,对细胞进行胰蛋白酶处理,并传代到10 cm的平板中。第3天,用DMEM 10%胎牛血清、100单位/ml pen/strep和200 ug/ml潮霉素替换培养基。培养基每隔2-4天更换一次,直到非转染细胞死亡,分离的克隆直径为~1-2 mm(13-15天)。细胞池是通过对整个培养板进行胰蛋白酶化并在新鲜选择培养基中重新培养而产生的(培养板的大小取决于初始菌落的数量和大小)。用1μg/ml四环素诱导约60–70%融合细胞24小时。收集次级流入细胞(~85-95%融合细胞)进行AP-MS分析。

BioID克隆、稳定细胞系生成和样品采集

将Endofin和HD-PTP的构建物克隆到5′BirA*pcDNA5-FRT-TO或pcDNA5-FRT-TO 3′BirA*中。EGFR的构建物被克隆到5'(MiniTurbo pcDNA5-FRT-TO或pcDNA5-FRT-TO 3′MiniTurbo。T-REx 293T细胞中的Flip-In细胞(Endofin-BirA*和HD-PTP-BirA**)或T-REx HeLa细胞中的Flip-In(EGFR-MiniTurbo),使用脂质体2000(Invitrogen)以6孔格式转染0.2μg克隆构建物和2μg pOG44(OpenFreezer V4134),根据制造商的说明。第2天,对细胞进行胰蛋白酶处理,并传代到10 cm的平板中。第3天,用DMEM 10%胎牛血清、100单位/ml pen/strep和200 ug/ml潮霉素替换培养基。培养基每隔2-4天更换一次,直到非转染细胞死亡,分离的克隆直径为~1-2mm(13-15天)。细胞池是通过对整个培养板进行胰蛋白酶化并在新鲜选择培养基中重新培养而产生的(培养板的大小取决于初始菌落的数量和大小)。对于BirA*实验,用1ug/ml四环素诱导细胞约60-70%的融合24小时。第二天,向含有四环素的培养基中添加50μM生物素,并将细胞再培养24小时。对于EGFR-miniTurbo实验,用1ug/ml四环素在缺乏生物素的培养基中诱导细胞约60-70%的融合24小时。第2天,细胞被切换到含四环素的无血清培养基。在血清饥饿16小时后,在存在或不存在100ng/mL EGF的情况下,向培养基中添加50μM生物素15分钟。为了收获,将细胞在冰冷的PBS中刮去,在PBS中洗涤x2,将其制成丸状并在−80°C下冷冻,直到进行MS处理。

AP-MS和BioID样品处理和质谱分析

对于AP-MS研究,按照St-Denis等人之前的描述进行FLAG亲和纯化。(St-Denis等人。,2016)每个样品的¼通过Velos Orbitrap质谱分析。使用激光拉拔器(程序=4;热量=280,FIL=0,VEL=18,DEL=200)在熔融石英毛细管柱(0.75μm ID,350μm OD)上形成喷嘴。10 cm(+/-1 cm)C18反相材料(Reprosil-Pur 120 C18-AQ,3μm)通过压力弹(在甲醇中)填充在色谱柱中。然后在缓冲液A(6μl)中对色谱柱进行预平衡,然后将其串联至NanoLC-Ultra 2D-plus HPLC系统(Eksigent),该系统耦合至配备纳米电喷雾离子源(Proxeon Biosystems)的LTQ-Orbitrap Velos(热电)。Xcalibur 2.0下的LTQ-Orbitrap Velos仪器在数据相关模式下运行,以在MS和最多10个后续MS/MS采集之间自动切换。缓冲液A为100%H2O,0.1%甲酸;缓冲液B为100 ACN,0.1%甲酸。HPLC梯度程序在125分钟内提供乙腈梯度。在最初的20分钟内,流速为400μL/min,流速为2%B。然后流速降至200μL/min,溶剂B的分数以线性方式增加至35%,直到95.5分钟。然后在5分钟内将溶剂B增加到80%,并保持该水平直到107分钟。然后将流动相降低至2%B,直到运行结束(125分钟)。质谱仪数据相关采集的参数为:1个质心质谱(质量范围400-2000),其次是10个最丰富离子的质谱/质谱。一般参数为:激活类型=CID,隔离宽度=1 m/z,归一化碰撞能量=35,激活Q=0.25,激活时间=10毫秒。对于数据相关采集,最小阈值为500,重复计数=1,重复持续时间=30秒,排除大小列表=500,排除持续时间=三十秒,排除质量宽度(按质量计)=低0.03,高0.03。

对于BirA*BioID研究,如St-Denis等人。(St-Denis等人。,2016)每个样品的¼在TripleTOF™5600仪器(加拿大安大略省康科德市AB SCIEX)上运行。使用激光拉拔器(Sutter Instrument Co.,型号P-2000,参数设置为热量:280,FIL=0,VEL=18,DEL=2000),从熔融石英毛细管中生成纳米喷雾发射器,内径75μm,外径365μm,尖端开口5-8μm。使用压力注入池将C18反相材料(Reprosil-Pur 120 C18-AQ,3μm)重新悬浮在甲醇中填充纳米喷雾发射器。样品以400nl/min的速度直接加载到75μmx10cm纳米喷雾发射器上,持续14min。用Eksigent ekspert™Nano Ultra 1D Plus生成的乙腈梯度从色谱柱中洗脱肽,并在TripleTOF上进行分析。梯度以200 nl/min的速度从2%乙腈和0.1%甲酸传递到35%乙腈和0.1%甲酸,线性梯度为90 min。然后用80%的乙腈和0.1%的甲酸清洗10分钟,再平衡15分钟至2%的乙腈与0.1%的乙酸。总DDA协议为140分钟。第一次DDA扫描的累积时间为250ms,质量范围为400-1250Da。然后对第一次DDA扫描中识别出的前20个肽进行20次MS/MS扫描,每次MS/MS扫查的累积时间为100 MS。要求每个候选离子的电荷状态为2-4,最小阈值为每秒250计数,并使用50mDa的窗口进行隔离。动态排除之前分析的候选离子15秒。

对于MiniTurbo BioID研究,如Hesketh等人之前所述进行链霉亲和素下拉。(Hesketh等人。,2020)每个样品的1/6在TripleTOF™6600仪器(加拿大安大略省康科德市AB SCIEX)上运行。样品以800 nL/min的速度直接加载到平衡的HPLC柱上,并在Hesketh等人之前报告的三重TOF仪器上进行LC-MS/MS。(Hesketh等人。,2020). 如Hesketh等人之前报告的那样,使用仪器方法设置为数据相关采集(DDA)和数据独立采集(SWATH)模式,通过两次单独的注射对样品进行分析。(Hesketh等人。,2020).

数据相关和独立采集数据搜索

使用ProHits实验室信息管理系统(LIMS)平台存储、搜索和分析数据相关的质谱数据。在ProHits中,WIFF文件使用WIFF2MGF转换器转换为MGF格式,使用ProteoWizard(V3.0.10702)和AB SCIEX MS Data converter(V1.3 beta)转换为mzML格式。然后使用吉祥物(V2.3.02)和彗星(V2016.01版本2)搜索数据。使用从NCBI获得的RefSeq数据库(第57版,2013年1月30日)中的人类和腺病毒序列对光谱进行了搜索,并补充了马克斯·普朗克研究所的“常见污染物”(http://maxquant.org/contaminants.zip)和全球蛋白质组机器(GPM;ftp://ftp.thegpm.org/fasta/cRAP/cRAP.fasta)、正向和反向序列(标记为“gi|9999”或“DECOY”)、序列标签(BirA、GST26、mCherry和GFP)和链霉亲和素,共72481个条目。设置数据库参数以搜索胰蛋白酶裂解,允许每个肽最多2个缺失裂解位点,对于电荷为2+至4+的前体,质量耐受性为35ppm,对于片段离子的耐受性为0.15amu。对脱酰胺的天冬酰胺、谷氨酰胺和氧化蛋氨酸进行了可变修饰。每个搜索引擎的结果通过iProphet管道通过TPP(跨蛋白质组管道,v.4.7 POLAR VORTEX rev 1)进行分析。

使用MSPLIT-DIA(版本1.0(Wang等人。,2015))在ProHits 4.0中实施(Liu等人。,2016). 为了生成样本特异性光谱库,通过仅保留具有最佳MS-GFDB的光谱(Beta版本1.0072(2014年6月30日)),从匹配的DDA运行(BirA*)中汇集肽谱匹配(PSM)(Kim等人。,2010))每个独特肽序列和前体电荷状态的概率。设置MS-GFDB参数以搜索前体质量耐受性为50 ppm、电荷为2+–4+的胰蛋白酶裂解。肽长度限制为8-30个氨基酸,并选择氧化蛋氨酸作为可变修饰。对于MiniTurbo搜索,人类SWATH地图集(Rosenberger等人。,2014)用作搜索库。使用targetdecoy方法,肽级错误发现率(FDR)为1%(Elias和Gygi,2007年). 使用NCBI RefSeq数据库(第57版,2013年1月30日)对总共736241个人类和腺病毒序列进行了光谱搜索,这些序列补充了马克斯普朗克研究所的常见污染物(http://141.61.102.106:8080/share.cgi?ssid=0f2gfuB)和全球蛋白质组机器(GPM;http://www.thegpm.org/crap/index.html). 然后使用光谱库通过MSPLIT与蛋白质进行肽谱匹配,其中肽由MSPLIT-DIA通过1%FDR识别,随后使用ProHits 4.0与基因匹配(Liu等人。,2016).

SAINTexpress的SAINT分析(版本3.6.1(Teo等人。,2014))用于对所有数据的交互进行评分。对于AP-MS结果,将诱饵投放(每个投放两个生物复制品)与8个阴性对照(GFP-FLAG)进行比较。对于BirA*-MSPLIT结果,将诱饵投放(各两次生物复制)与四次阴性对照投放(BirA*-FLAG和BirA**-FLAG-GFP)进行比较。对于MiniTurbo-MSPLIT结果,将诱饵投放(每个投放两个生物复制品)与五个阴性对照投放(GFP-FLAG-MiniTurbo和FLAG-mini Turbo)进行比较。错误发现率(FDR)≤1%的猎物(基于SAINT平均得分在生物复制品中的分布的贝叶斯估计)被视为高置信邻近性相互作用,并使用ProHits-iz-Iz-Iz-(Knight等人。,2017))(prohitsviz.lonenfeld.ca)。在ProHits-viz中,一旦一个猎物用至少一个诱饵通过了选定的FDR阈值(此处为1%),则会检索数据集中所有诱饵的所有数量值。边缘颜色表示低于5%FDR阈值的饵-食饵近距离相互作用。

蛋白质组学数据沉积

AP-MS数据已作为完整的提交文件保存到MassIVE存储库(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp)并指定了注册号MSV00087704。ProteomeXchange的加入是PXD026937型。该数据集目前可供公众访问ftp://massive.ucsd.edu/MSV000087704/.

BirA BioID MSPLIT数据已作为不完整的提交文件保存到MassIVE存储库(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp)并指定了登录号MSV00087705。该数据集目前可供公众访问ftp://massive.ucsd.edu/MSV000087705/.

MiniTurbo BioID MSPLIT数据已作为不完整的提交文件保存到MassIVE存储库(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp)并指定了登录号MSV00087706。该数据集目前可供公众访问ftp://massive.ucsd.edu/MSV000087706/.

字符串分析

使用STRING数据库生成蛋白质相互作用网络(Szklarczyk等人。,2019). 彩色节点表示使用BFDR临界值0.01和SAINT得分高于0.85从BioID屏幕识别出的第一个交互器外壳。白色节点表示从STRING数据库中提取的第二个交互器外壳。边缘代表从STRING实验和数据库中收集的蛋白质相互作用。边缘的厚度反映了其置信度。第二层相互作用体中最多有50个蛋白质,并且从网络中删除了唯一的相互作用体。

免疫沉淀

在缓冲液A(50 mM Tris pH 7.5,50 mM NaCl,1.5 mM MgCl)中的冰上溶解细胞21 mM EDTA、0.2%triton x-100、5%甘油、1 mM DTT和cOmplete(Roche)蛋白酶抑制剂)。蛋白质提取物以16000g在4°C下旋转10分钟。保留一部分上清液用于SDS-PAGE和Western blot。将剩余部分预先清除,然后在4°C搅拌下与一级抗体孵育1小时。用sepharose(Millipore)或磁珠(BioRad)与等量的蛋白质A/G偶联,回收蛋白质-抗原复合物。蛋白质提取物与磁珠在4°C搅拌下孵育1h。然后将珠洗3次,并用Laemmli缓冲液洗脱,然后将样品煮沸10分钟。免疫沉淀组分和裂解产物通过SDS-PAGE和Western blotting进行分析。

尺寸排除色谱分离

在冰上的缓冲液(150mM NaCl、0.1%NP40、6.25mM TrisHCl ph8、2mM EDTA、0.1mM MgCl2、1mM EGTA、蛋白酶抑制剂混合物)中裂解细胞。首先将裂解液在16000g下离心10min,然后将上清液在100000g下离心1h。将上清液加载到Superdex200 HPLC柱上,收集0.3ml组分。通过SDS-PAGE和Western blot对收集的部分进行蛋白质分析。

等密度蔗糖梯度细胞分级

293T细胞在冰上用PBS清洗,在冰上刮取少量冰冷PBS。将细胞颗粒重新悬浮在等渗缓冲液中(20mM Hepes pH7.5;150mM NaCl;1mM DTT和蛋白酶抑制剂混合物),并通过针刺(25号针10次,然后是27号针20次)逐步分解细胞。以400g旋转裂解液以消除细胞核,将细胞溶质上清液加载在10-40%蔗糖梯度上,在Beckman Ti-55转子中以100000g离心16h。收集组分(0.25 ml),并使用所示标记物通过Western blotting进行分析。

环己酰亚胺外壳

细胞在无血清DMEM培养基中饥饿2 h,并用环己酰亚胺(CHX,Sigma)预处理1 h(HeLa细胞为10μg/ml,293T细胞为100μg/ml)。作为阴性对照,将细胞在CHX存在下用巴氟霉素A1(Sigma)预处理1小时,以阻断溶酶体酸化,从而抑制受体溶酶体降解。接下来,在37°C的0.5%FBS DMEM培养基中,在CHX存在的情况下,用EGF(50 ng/ml,2和4小时)或纤连蛋白(10μg/ml,3和6小时)刺激细胞。在追踪受体达到指定的时间点后,在冰上裂解细胞,并通过Western blotting分析受体水平。

使用cs-ELISA测量细胞表面

根据Apaja等人的描述,在活细胞中进行基于细胞表面ELISA的分析。(Apaja等人。,2010). 简而言之,细胞在无血清DMEM培养基中饥饿2小时,在冰上用整合素α5或EGFR抗体标记,并用辣根过氧化物酶(HRP)结合二级抗体(Jackson ImmunoResearch)和Amplex Red(Life Technologies)检测。在HeLa细胞中,37°C下EGF刺激5分钟(50 ng/ml)后测量细胞内吞。对于质膜上的受体稳定性实验,分别用纤维连接蛋白(10μg/ml,4 h)和EGF(50 ng/ml,20 min)刺激整合素α5和EGFR。

脉冲追踪实验和免疫荧光

HeLa细胞接种在玻璃盖玻片上,并在0.5%FBS DMEM中饥饿2小时。对于EGFR内化,在0.5%FBS DMEM中用EGF(50 ng/ml,5 min,37°C)刺激细胞。接下来,用PBS清洗EGF,并添加新鲜的0.5%FBS DMEM培养基,以在37°C的指定时间点追踪EGFR。HeLa细胞用4%多聚甲醛固定15分钟,并在室温下用0.1%Triton X-100渗透10分钟。在室温下用一级抗体标记细胞1小时,然后用荧光二级抗体(分子探针,Invitrogen)标记细胞并安装成像。使用Plan-Apochromat 63x/NA 1.4物镜,在LSM780共焦显微镜(Carl Zeiss MicroImaging,Inc)上进行连续图像采集。

利用FRIA进行补充实验和囊泡货物跟踪

Kazan等人描述了使用FRIA测定活细胞中货物标记的囊泡pH值的方法。和Barriere等人。(Barriere和Lukacs,2008年;Kazan等人。,2019). 在冰上用一级抗体和异硫氰酸荧光素(FITC)结合二级Fab(Jackson ImmunoResearch)标记整合素α5和EGFR,并追踪指定时间。Apaja等人在之前使用瞬时表达的CD4-Ub或CD4tCC-UbAllRΔG。(Apaja等人。,2010). 在互补实验中,接种在6孔板中的HeLa细胞被Lipofectamine 2000(Invitrogen)与0.5μg Endofin或HD-PTP构建物以及100 ng mcherry构建物瞬时共转染。将转染后24 h的细胞接种在玻璃盖玻片(1.5 mm厚,Fisher Scientific)上进行FRIA。FITC-右旋糖酐(10 kDa,50μg/ml,分子探针)用作溶酶体递送的对照。右旋糖酐被内吞1小时,并在37°C下追逐2小时。使用配备有X-Cite 120Q系统(Lumen Dynamics Group Inc.)和MetaFluor软件(Molecular Devices)的蔡司观察者Z1(Carl Zeiss MicroImaging)来测量荧光强度。

HeLa细胞迁移试验

使用xCELLigence系统(ACEA Biosciences)进行迁移分析。30000个HeLa细胞在无血清DMEM培养基中迁移24小时至作为化学引诱剂的10%FBS培养基。作为阴性对照,用α5β1整合素阻断抗体(10μg/ml)处理细胞。通过绘制每个被测细胞系的实时迁移曲线的斜率来分析细胞迁移率。

信号发送实验

HeLa细胞在37°C的指定时间点用EGF(5 ng/ml)或纤维连接蛋白(10μg/ml)处理前饥饿2 h。收集细胞并在缓冲液B(50 mM Tris pH 7.5,150 mM NaCl,1.5 mM MgCl)中的冰上溶解2、1 mM EDTA、1%triton x-100、5%甘油、20 mM NaF、5 mM NaPPi、1 mM-NaVO(旁白)4、2 mM咪唑、175μg/ml PMSF和cOmplete(Roche)蛋白酶抑制剂)。通过SDS-PAGE分离蛋白质提取物,并通过蛋白质印迹进行分析。

量化和统计分析

使用imageJ软件对蛋白质印迹和免疫荧光图像进行定量。使用MetaFluor软件量化FRIA数据,绘制pHv峰值,并使用Origin软件进行进一步分析。使用Microsoft Excel软件进行统计分析。显著性通过配对双尾Student t检验确定,p值为:*<0.05、*<0.01和**<0.001的数据被视为显著。

致谢

我们要感谢Paola Blanchette博士的帮助和建议。J.M.K拥有加拿大博士奖Fonds de Recherche Sante(FRQS)。G.D拥有Fonds de Recherche Sante(FRQS)博士后奖。这项工作得到了加拿大卫生研究院(CIHR)的支持,加拿大拨款245969,加拿大癌症学会研究所(CCSRI)的拨款245095。图6是使用创建的生物呈现网站.

作者贡献

J.M.K.、G.D.、G.L.L.和A.P.进行了研究概念化和实验设计。J.M.K.、G.D.和C.E.M.进行了实验和分析。H.J.、D.K.、P.M.A.、A.R.和N.S.D.进行了实验。J.M.K.、G.D.、A.C.G.、G.L.L.和A.P.编写并编辑了手稿。

利益声明

作者声明没有竞争性的经济利益。

笔记

发布日期:2021年11月19日

脚注

补充信息可在网上找到https://doi.org/10.1016/j.isci.2021.103274.

补充信息

文件S1。图S1–S6和表S1:
单击此处查看。(240万,pdf)

数据和代码可用性

工具书类

  • Agromayor M.、Soler N.、Caballe A.、Kueck T.、Freund S.M.、Allen M.D.、Bycroft M.、Perisic O.、Ye Y.、Mcdonald B.ESCRT-I的UBAP1亚单位通过SOUBA结构域与泛素相互作用。结构。2012;20:414–428. [PMC免费文章][公共医学][谷歌学者]
  • Akutsu M.、Kawasaki M.、Katoh Y.、Shiba T.、Yamaguchi Y.、Kato R.、Kato K.、Nakayama K.、Wakatsuki S.通过Tom1-GAT域识别泛素化货物的结构基础。FEBS信函。2005;579:5385–5391.[公共医学][谷歌学者]
  • Ali N.、Zhang L.、Taylor S.、Mironov A.、UrbéS.、Woodman P.UBPY和ESCRT交换的招募推动了EGFR到MVB的HD-PTP相关排序。货币。生物。2013;23:453–461。[公共医学][谷歌学者]
  • Alwan H.A.、Van Zoelen E.J.、Van Leeuwen J.E.配体诱导的溶酶体表皮生长因子受体(EGFR)降解是在蛋白酶体依赖的EGFR去泛素化之前进行的。生物学杂志。化学。2003;278:35781–35790.[公共医学][谷歌学者]
  • Apaja P.M.,Lukacs G.L.质膜蛋白质稳态。生理学。2014;29:265–277. [PMC免费文章][公共医学][谷歌学者]
  • Apaja P.M.,Xu H.,Lukacs G.L.质膜未折叠蛋白的质量控制。《细胞生物学杂志》。2010;191:553–570. [PMC免费文章][公共医学][谷歌学者]
  • Bache K.G.、Raiborg C.、Mehlum A.、Stenmark H.STAM和Hrs是早期内体上多价泛素结合复合物的亚单位。生物学杂志。化学。2003;278:12513–12521.[公共医学][谷歌学者]
  • Bache K.G.、Stuffers S.、Malerød L.、Slagsvold T.、Raiborg C.、Lechadeur d.、Wälchli S.、Lukacs G.L.、Brech A.、Stenmark H.表皮生长因子受体的降解而非沉默需要ESCRT-III亚基hVps24。分子生物学。摄氏度。2006年;17:2513–2523. [PMC免费文章][公共医学][谷歌学者]
  • Barriere H.,Lukacs G.L.通过单细胞荧光比率成像分析内吞贩运。货币。协议。塞尔特。生物。2008;40:15.13.1–15.13.21.[公共医学][谷歌学者]
  • Barriere H.、Nemes C.、Du K.、Lukacs G.L.通过内胚体分选机制将多泛素识别为溶酶体靶向信号的可塑性。分子生物学。塞尔特。2007年;18:3952–3965. [PMC免费文章][公共医学][谷歌学者]
  • Barriere H.、Nemes C.、Lechardeur D.、Khan-Mhammad M.、Fruh K.、Lukacs G.L.哺乳动物细胞膜蛋白寡泛素依赖性内化的分子基础。交通。2006年;7:282–297.[公共医学][谷歌学者]
  • Belle L.、Ali N.、Lonic A.、Li X.、Paltridge J.L.、Roslan S.、Herrmann D.、Conway J.R.、Gehling F.K.、Bert A.G.酪氨酸磷酸酶PTPN14(Pez)通过改变蛋白质运输来抑制转移。科学。信号。2015;8:ra18。[公共医学][谷歌学者]
  • Budzinska M.I.、Villarroel-Campos D.、Golding M.、Weston A.、Collinson L.、Snijders A.P.、Schiavo G.PTPN23结合动力蛋白适配器BICD1,是神经营养素受体内吞分选所必需的。细胞科学杂志。2020;133 [PMC免费文章][公共医学][谷歌学者]
  • Chen Y.-G.,Wang Z.,Ma J.,Zhang L.,Lu Z.Endofin,FYVE域蛋白,与Smad4相互作用并促进转化生长因子-β信号传导。生物学杂志。化学。2007年;282:9688–9695.[公共医学][谷歌学者]
  • Chen Y.、Low T.Y.、Choong L.Y.、Ray R.S.、Tan Y.L.、Toy W.、Lin Q.、Ang B.K.、Wong C.H.、Lim S.磷蛋白组学确定Endofin、DCBLD2和KIAA0582是人类癌细胞中EGF信号和Iressa的新型酪氨酸磷酸化靶点。蛋白质组学。2007年;7:2384–2397.[公共医学][谷歌学者]
  • Christ L.、Raiborg C.、Wenzel E.M.、Campsteijn C.、Stenmark H.ESCRT膜断裂机制的细胞功能和分子机制。生物化学科学趋势。2017;42:42–56.[公共医学][谷歌学者]
  • Desrochers G.,Kazan J.M.,Pause A.受体贩运和癌症中His域蛋白酪氨酸磷酸酶的结构和功能(1)生物化学。细胞生物学。2019;97:68–72.[公共医学][谷歌学者]
  • Doyotte A.、Mironov A.、Mckenzie E.、Woodman P.Bro1-相关蛋白HD-PTP/PTPN23是内胚体货物分类和多泡体形态发生所必需的。程序。国家。阿卡德。科学。2008;105:6308–6313. [PMC免费文章][公共医学][谷歌学者]
  • Eden E.R.,Huang F.,Sorkin A.,Futter C.E.EGF受体泛素化在调节其细胞内交通中的作用。交通。2012;13:329–337。 [PMC免费文章][公共医学][谷歌学者]
  • Elias J.E.、Gygi S.P.目标生态搜索策略,用于提高通过质谱法进行大规模蛋白质鉴定的信心。自然方法。2007年;4:207–214.[公共医学][谷歌学者]
  • Gahloth D.、Heaven G.、Jowitt T.A.、Mould A.P.、Bella J.、Baldock C.、Woodman P.、Tabernero L.HD-PTP磷酸酶的开放结构为ESCRT功能的调节机制提供了新的见解。科学代表。2017;7:9151. [PMC免费文章][公共医学][谷歌学者]
  • Gahloth D.、Levy C.、Heaven G.、Stefani F.、Wunderley L.、Mould P.、Cliff M.J.、Bella J.、Fielding A.J.、Woodman P.ESCRT调节器HD-PTP和UBAP1之间选择性相互作用的结构基础。结构。2016;24:2115–2126. [PMC免费文章][公共医学][谷歌学者]
  • Gahloth D.、Levy C.、Walker L.、Wunderley L.、Mould A.P.、Taylor S.、Woodman P.和Tabernero L.TGFβ信号调节剂SARA/Endofin与HD-PTP特定相互作用的结构基础。结构。2017;251011–1024.e4。[PMC免费文章][公共医学][谷歌学者]
  • Gahloth D.、Levy C.、Walker L.、Wunderley L.、Mould A.P.、Taylor S.、Woodman P.和Tabernero L.TGFβ信号调节剂SARA/Endofin与HD-PTP特定相互作用的结构基础。结构。2017;25:1011–1024.e4。 [PMC免费文章][公共医学][谷歌学者]
  • Gingras M.-C.、Zhang Y.L.、Kharitidi D.、Barr A.J.、Knapp S.、Tremblay M.L.、Pause A.HD-PTP是一种催化失活的酪氨酸磷酸酶,因为其磷酸酶结构域存在保守的差异。《公共科学图书馆·综合》。2009;4:e5105。 [PMC免费文章][公共医学][谷歌学者]
  • Goh J.B.、Wallace D.F.、Hong W.、Subramaniam V.N.Endofin,铁调节激素hepcidin的新型BMP-SMAD调节剂。科学代表。2015;5 [PMC免费文章][公共医学][谷歌学者]
  • Hesketh G.G.、Papazotos F.、Pawling J.、Rajendran D.、Knight J.D.、Martinez S.、Taipale M.、Schramek D.、Dennis J.W.、Gingras A.-C.GATOR–Rag GTPase途径通过溶酶体衍生氨基酸抑制mTORC1激活。科学。2020;370:351–356.[公共医学][谷歌学者]
  • 侯杰,杜艳Y.L.,黄鹏,崔海。整合素α5β1在人类癌症中的作用。Onco目标治疗。2020;13:13329. [PMC免费文章][公共医学][谷歌学者]
  • Huang F.、Kirkpatrick D.、Jiang X.、Gygi S.、Sorkin A.通过激酶域内的多泛素化对EGF受体内化和降解的差异调节。摩尔摄氏度。2006年;21:737–748.[公共医学][谷歌学者]
  • Ichioka F.、Takaya E.、Suzuki H.、Kajigaya S.、Buchman V.L.、Shibata H.、Maki M.HD-PTP和Alix共享一些与其Bro1域或富含脯氨酸区域相互作用的膜交通相关蛋白。架构(architecture)。生物化学。生物物理学。2007年;457:142–149.[公共医学][谷歌学者]
  • Iyengar P.V.对TGF-β途径中泛素酶的调节。国际分子科学杂志。2017;18:877. [PMC免费文章][公共医学][谷歌学者]
  • Katoh Y.、Shiba Y.、Mitsuhashi H.、Yanagida Y.、Takatsu H.、Nakayama K.Tollip和Tom1形成复合物,将泛素结合蛋白招募到早期内体上。生物学杂志。化学。2004;279:24435–24443.[公共医学][谷歌学者]
  • Kazan J.M.、Lukacs G.L.、Apaja P.M.、Pause A.Springer;2019.用于研究受体贩运中Escrt功能的单细胞荧光比率图像分析。ESCRT复合体。[公共医学][谷歌学者]
  • Kharitidi D.、Apaja P.M.、Manteghi S.、Suzuki K.、Malitskaya E.、Roldan A.、Gingras M.-C.、Takagi J.、Lukacs G.L.、Pause A.整合素α5β1泛素化、内吞分选和细胞迁移中内体pH值和配体占有率的相互作用。单元格代表。2015;13:599–609.[公共医学][谷歌学者]
  • Kim S.、Mischerikow N.、Bandeira N.、Navarro J.D.、Wich L.、Mohammed S.、Heck A.J.、Pevzner P.A.串联质谱对CID、ETD和CID/ETD的生成函数:数据库搜索应用。分子细胞蛋白质组学。2010;9:2840–2852. [PMC免费文章][公共医学][谷歌学者]
  • Knight J.D.、Choi H.、Gupta G.D.、Pelletier L.、Raught B.、Nesvizhskii A.I.、Gingras A.-C.ProHits,即:一套用于可视化相互作用蛋白质组学数据的网络工具。自然方法。2017;14:645–646. [PMC免费文章][公共医学][谷歌学者]
  • Lahaie S.、Morales D.、Bagci H.、Hamoud N.、Castonguay C.E.、Kazan J.M.、Desrochers G.、Klar A.、Gingras A.C.、Pause A.。细胞塌陷和脊髓运动轴突引导中ephrin-B:EphB信号需要内体分选适配器HD-PTP。科学。代表。2019;9:11945。 [PMC免费文章][公共医学][谷歌学者]
  • Lambert J.-P.、Tucholska M.、Go C.、Knight J.D.、Gingras A.-C.接近生物素化和亲和纯化是染色质相关蛋白复合物相互作用组定位的补充方法。蛋白质组学杂志。2015;118:81–94. [PMC免费文章][公共医学][谷歌学者]
  • Lee J.,Oh K.-J.,Lee D.,Kim B.Y.,Choi J.S.,Ku B.,Kim S.J.在含有STAM2(ESCRT-0的一个亚单位)核心区域的复合体中的HD-PTP Bro1结构域的结构研究。请给我一个。2016;11:e0149113。 [PMC免费文章][公共医学][谷歌学者]
  • Liu G.、Knight J.D.、Zhang J.P.、Tsou C.-C.、Wang J.、Lambert J.-P.、Larsen B.、Tyers M.、Raught B.、Bandeira N.。ProHits 4.0中的数据独立采集分析。蛋白质组学杂志。2016;149:64–68. [PMC免费文章][公共医学][谷歌学者]
  • Lobert V.H.、Brech A.、Pedersen N.M.、Wesche J.、Oppelt A.、Maleröd L.、Stenmark H.整合素的泛素化通过纤维连接蛋白-整合素复合物的溶酶体降解控制成纤维细胞的迁移。开发委员会。2010;19:148–159.[公共医学][谷歌学者]
  • Lobert V.H.,Stenmark H.ESCRT机制通过调节肌球蛋白轻链介导成纤维细胞的极化。J.策尔。科学。2012;125:29–36.[公共医学][谷歌学者]
  • Lu Q.,Hope L.W.,Brasch M.,Reinhard C.,Cohen S.N.TSG101与HRS的相互作用介导了内体转运和受体下调。程序。国家。阿卡德。科学。2003;100:7626–7631. [PMC免费文章][公共医学][谷歌学者]
  • Ma H.、Wardega P.、Mazaud D.、Klosowska-Wardega A.、Jurek A.、Engstrom U.、Lennartsson J.、Heldin C.H.含组氨酸域蛋白酪氨酸磷酸酶调节血小板衍生生长因子受体的细胞内分选和降解。细胞信号。2015;27:2209–2219.[公共医学][谷歌学者]
  • Mamiñska A.、Bartosik A.、Banach-Orłowska M.、Pilecka I.、Jastrzębski K.、Zdżalik-Bielecka D.、Castanon I.、Poulain M.、Neyen C.、Woliñska-Nizio L.ESCRT蛋白通过贩运细胞因子受体限制构成性NF-κB信号传导。科学。信号。2016;9:ra8。[公共医学][谷歌学者]
  • Manteghi S.、Gingras M.-C.、Kharitidi D.、Galarneau L.、Marques M.、Yan M.、Cencic R.、Robert F.、Paquet M.、Witcher M.ESCRT成分HD-PTP的单倍体不足易患癌症。单元格代表。2016;15:1893–1900.[公共医学][谷歌学者]
  • Mierke C.T.、Frey B.、Fellner M.、Herrmann M.、Fabry B.整合素α5β1通过增强收缩力促进癌细胞侵袭。J.凯尔。科学。2011;124:369–383. [PMC免费文章][公共医学][谷歌学者]
  • Miller D.S.J.、Bloxham R.D.、Jiang M.、Gori I.、Saunders R.E.、Das D.、Chakravarty P.、Howell M.、Hill C.S.TGF-β信号的动力学由通过ESCRT机制的受体贩运决定。单元格代表。2018年;25:1841-1855.e5。 [PMC免费文章][公共医学][谷歌学者]
  • Norris A.、Tammineni P.、Wang S.、Gerdes J.、Murr A.、Kwan K.Y.、Cai Q.、Grant B.D.SNX-1和RME-8反对在内体上组装HGRS-1/ESCRT-0降解微域。程序。国家。阿卡德。科学。2017;114:E307–E316。 [PMC免费文章][公共医学][谷歌学者]
  • Okiyoneda T.、Barrière H.、Bagdány M.、Rabeh W.M.、Du K.、Höhfeld J.、Young J.C.、Lukacs G.L.外周蛋白质量控制从质膜上去除未折叠CFTR。科学。2010;329:805–810. [PMC免费文章][公共医学][谷歌学者]
  • Pandey A.、Fernandez M.M.、Steen H.、Blagoev B.、Nielsen M.M.,Roche S.、Mann M.、Lodish H.F.通过质谱鉴定新型免疫受体酪氨酸基活化基序包含分子STAM2及其参与生长因子和细胞因子受体信号通路。生物学杂志。化学。2000;275:38633–38639.[公共医学][谷歌学者]
  • Parkinson M.D.、Piper S.C.、Bright N.A.、Evans J.L.、Boname J.M.、Bowers K.、Lehner P.J.、LUZIO J.P.。非标准ESCRT途径,包括组氨酸域磷酸酪氨酸磷酸酶(HD-PTP),用于下调病毒泛素化MHCⅠ类。生物化学。J。2015;471:79–88. [PMC免费文章][公共医学][谷歌学者]
  • Pashkova N.、Gakhar L.、Winistorfer S.C.、Sunshine A.B.、Rich M.、Dunham M.J.、Yu L.、Piper R.C.酵母Alix同源物Bro1作为泛素受体,将蛋白质分拣到多泡内体中。开发委员会。2013;25:520–533. [PMC免费文章][公共医学][谷歌学者]
  • Piper R.C.,Dikic I.,Lukacs G.L.内吞作用中泛素依赖性分选。《冷泉港展望》。生物。2014;6:a016808。 [PMC免费文章][公共医学][谷歌学者]
  • Platta H.W.、Stenmark H.细胞内吞和信号传导。货币。操作。塞尔特。生物。2011;23:393–403.[公共医学][谷歌学者]
  • Raiborg C.、Bache K.G.、Gilloly D.J.、Madshus I.H.、Stang E.、Stenmark H.Hrs将泛素化蛋白质分类为早期内体的网格蛋白涂层微域。国家委员会。生物。2002;4:394–398.[公共医学][谷歌学者]
  • Raiborg C.、Bache K.G.、Mehlum A.、Stang E.、Stenmark H.Hrs将氯菊酯招募到早期内体中。EMBO J。2001;20:5008–5021. [PMC免费文章][公共医学][谷歌学者]
  • Raiborg C.、Wesche J.、Malerod L.、Stenmark H.内体上的扁平网格蛋白涂层通过动态微域中的支架化Hrs介导降解蛋白的分选。细胞科学杂志。2006年;119:2414–2424。[公共医学][谷歌学者]
  • Rodahl L.M.、Stuffers S.、Lobert V.H.、Stenmark H.ESCRT蛋白在细胞信号衰减中的作用。生物化学。社会事务处理。2009;37:137–142.[公共医学][谷歌学者]
  • Rosenberger G.、Koh C.C.、Guo T.、Röst H.L.、Kouvonen P.、Collins B.C.、Heusel M.、Liu Y.、Caron E.、Vichalkovski A.通过SWATH-MS量化10000人类蛋白质的分析库。科学数据。2014;1:1–15. [PMC免费文章][公共医学][谷歌学者]
  • Row P.E.、Clague M.J.和UrbéS.生长因子诱导Hrs–STAM复合物的不同磷酸化特征:具有信号特异性的信号网络中的一个常见节点。生物化学。J。2005;389:629–636. [PMC免费文章][公共医学][谷歌学者]
  • Sachse M.、UrbéS.、Oorschot V.、Strous G.J.、Klumperman J.内体液泡上的双层网格蛋白涂层参与蛋白质向溶酶体的分选。分子生物学。塞尔特。2002;13:1313–1328. [PMC免费文章][公共医学][谷歌学者]
  • Seet L.F.,Hong W.Endofin,一种内体FYVE结构域蛋白。生物学杂志。化学。2001;276:42445–42454.[公共医学][谷歌学者]
  • 见L.-F.,Hong W.Endofin通过TOM1向早期内体招募网格蛋白。J.凯尔。科学。2005;118:575–587.[公共医学][谷歌学者]
  • 见L.-F.、Liu N.、Hanson B.J.、Hong W.Endofin将TOM1招募到内体。生物学杂志。化学。2004;279:4670–4679.[公共医学][谷歌学者]
  • Shi W.,Chang C.,Nie S.,Xie S.,Wan M.,Cao X.Endofin在BMP信号传导中充当Smad受体激活锚。J.凯尔。科学。2007年;120:1216–1224.[公共医学][谷歌学者]
  • Sigismund S.、Avanzato D.和Lanzetti L.EGFR在癌症中的新功能。摩尔·昂科尔。2018年;12:3–20. [PMC免费文章][公共医学][谷歌学者]
  • Sorkin A.、von Zastrow M.《细胞内吞和信号传递:相互缠绕的分子网络》。国家标准修订版Mol.Cel。生物。2009;10:609–622. [PMC免费文章][公共医学][谷歌学者]
  • St-Denis N.、Gupta G.D.、Lin Z.Y.、Gonzalez-Badillo B.、Veri A.O.、Knight J.D.、Rajendran D.、Couzens A.L.、Currie K.W.、Tkach J.M.人类磷酸酶的表型和相互作用分析确定了不同的有丝分裂调节器。单元格代表。2016;17:2488–2501.[公共医学][谷歌学者]
  • Stefani F.、Zhang L.、Taylor S.、Donovan J.、Rollinson S.、Domyotte A.、Brownhill K.、Bennion J.、Pickering-Brown S.、Woodman P.UBAP1是内胚体特异性ESCRT-I复合物的组成部分,对MVB分选至关重要。货币。生物。2011;21:1245–1250.[公共医学][谷歌学者]
  • Sundquist W.I.、Schubert H.L.、Kelly B.N.、Hill G.C.、Holton J.M.和Hill C.P.人类TSG101蛋白对泛素的识别。摩尔摄氏度。2004;13:783–789.[公共医学][谷歌学者]
  • Szklarczyk D.、Gable A.L.、Lyon D.、Junge A.、Wyder S.、Huerta-Cepas J.、Simonovic M.、Doncheva N.T.、MORRIS J.H.、BORK P.STRING v11:覆盖率增加的蛋白质-蛋白质关联网络,支持全基因组实验数据集中的功能发现。核酸研究。2019;47:D607–D613。 [PMC免费文章][公共医学][谷歌学者]
  • Szymanska E.,Budick Harmelin N.,Miaczynska M.内源性信号控制:ESCRT机制在受体介导的信号通路调节中的作用。塞米恩。细胞发育生物学。2018年;74:11–20.[公共医学][谷歌学者]
  • Teo G.、Liu G.、Zhang J.、Nesvizhskii A.I.、Gingras A.-C.、Choi H.SAINTexpress:INTeractome软件显著性分析的改进和附加功能。蛋白质组学杂志。2014;100:37–43. [PMC免费文章][公共医学][谷歌学者]
  • Toyoshima M.、Tanaka N.、Aoki J.、Taanaka Y.、Murata K.、Kyuuma M.、Kobayashi H.、Ishii N.、Yaegashi N.和Sugamura K.通过耗尽囊泡分选蛋白Hrs抑制肿瘤生长和转移:其对E-cadherin和beta-catenin的调节作用。癌症研究。2007年;67:5162–5171.[公共医学][谷歌学者]
  • UrbéS.、Mills I.G.、Stenmark H.、Kitamura N.、Clague M.J.内体定位和受体动力学确定肝细胞生长因子调节酪氨酸激酶底物的酪氨酸磷酸化。分子细胞生物学。2000;20:7685–7692. [PMC免费文章][公共医学][谷歌学者]
  • Vietri M.、Radulovic M.、Stenmark H.ESCRT的多种功能。自然修订版分子细胞生物学。2020;21:25–42.[公共医学][谷歌学者]
  • Wang J.、Tucholska M.、Knight J.D.、Lambert J.-P.、Tate S.、Larsen B.、Gingras A.-C.、Bandeira N.MSPLIT-DIA:数据依赖性采集的敏感肽鉴定。自然方法。2015;12:1106–1108. [PMC免费文章][公共医学][谷歌学者]
  • Wang T.,Liu N.S.,Seet L.F.,Hong W.VHS域包含Tom1、Tom1L1和Tom1L2在膜贩运中的新兴作用。交通。2010;11:1119–1128.[公共医学][谷歌学者]
  • Wegener C.S.、Maleröd L.、Pedersen N.M.、Prodiga C.、Bakke O.、Stenmark H.、Brech A.由GTPase缺陷的Rab5诱导的巨大内体的超微结构特征。组织化学。塞尔特。生物。2010;133:41.[公共医学][谷歌学者]
  • Wegner C.S.、Rodahl L.M.、Stenmark H.ESCRT蛋白质和细胞信号。交通。2011;12:1291–1297.[公共医学][谷歌学者]
  • Wenzel E.M.、Schultz S.W.、Schink K.O.、Pedersen N.M.、Nähse V.、Carlson A.、Brech A.、Stenmark H.、Raiborg C.协调的ESCRT和网格蛋白募集波定义了腔内小泡形成的时间和形态。国家公社。2018年;9:1–18. [PMC免费文章][公共医学][谷歌学者]
  • Yamaguchi H.,Wyckoff J.,Condeelis J.肿瘤中的细胞迁移。货币。操作。塞尔特。生物。2005;17:559–564。[公共医学][谷歌学者]
  • Yamakami M.、Yoshimori T.、Yokosawa H.Tom1是一种VHS域蛋白,与tollip、泛素和网格蛋白相互作用。生物学杂志。化学。2003;278:52865–52872.[公共医学][谷歌学者]

文章来自i科学由以下人员提供爱思维尔