研究交流\(\def\h填{\hskip5em}\def\hfil{\hski p3em}\def\eqno#1{\hfil{#1}}\)

期刊徽标结构生物学
通信
国际标准编号:2053-230X

a的结构嗜松塔拉菌GH62阿拉伯呋喃糖苷酶与AraDNJ的复合物(1.25)奥数分辨率

十字标记_颜色_方形_文本.svg

约克大学化学系约克结构生物学实验室,英国约克YO10 5DD,b条西澳大利亚大学分子科学学院(M313),地址:35 Stirling Highway,Crawley,WA 6009,Australia,c(c)真菌多样性,Novozymes A/S,中国总部,14 Xinxi Road,Shangdi Zone,Haidian District,Beijing 100085,People Republic,以及d日蛋白质生物化学与稳定性,Novozymes A/S,Krogshöjvej 36,2880 Bagsvrd,Denmark
*通信电子邮件:gideon.davies@york.ac.uk

M.J.van Raaij编辑,西班牙国家生物技术中心-CSIC(2017年11月23日收到; 2018年1月4日接受; 在线2018年7月26日)

复杂植物生物质的酶解是21世纪的一个主要社会目标,目的是从非石油和非食品来源提供可再生能源。许多工业过程中的主要问题之一,包括利用木质纤维素生产第二代生物燃料,是“半纤维素”(如木聚糖)的存在阻碍了纤维素生物量的获取。木聚糖,含聚合物β-1,4-木糖主链通常用乙酰基、葡萄糖醛酸和阿拉伯呋喃糖基“侧链”取代基修饰,所有这些都需要去除才能完全降解木聚糖。因此,人们对侧链离合酶及其对聚合物底物的作用感兴趣。这里,1.25的分辨率结构嗜松塔拉菌阿拉伯呋喃糖苷酶与抑制剂AraDNJ的复合物,与K(K)d日24±0.4µM(M),已报告。带正电荷的亚氨基糖苷通常被认为是保留糖苷酶的有效抑制剂,因为它们能够与酸碱和亲核羧酸盐相互作用。在这里,AraDNJ显示出对转化酶的良好抑制,从而进一步了解阿拉伯木聚糖识别和降解的结构基础。

1.简介

“第二代”生物燃料的生产,随着我们从以石油为基础的能源转向安全和可再生能源,来自非食品植物的多糖是一个主要的社会目标。尽管植物中的大多数多糖生物质是纤维素,但纤维素纤维上覆盖着木聚糖等半纤维素,这使获取纤维素变得更加困难。因此,木聚糖的酶降解对于纤维素酶在高等植物上的作用是必要的,但它本身也是一种重要的底物,因为葡萄糖和木聚糖以及少量其他糖是产生生物燃料的主要底物(2007年在萨默维尔讨论[萨默维尔,C.(2007),《当代生物学》第17期,R115-R119。]). 半纤维素(如木聚糖)的酶降解在生物燃料行业中至关重要(Pauly&Keegstra,2008年综述【Pauly,M.&Keegstra,K.(2008),《植物杂志》第54期,第559-568页。】)也适用于多种行业,如面包制造、动物饲料和制浆造纸工业(用于纸浆漂白)。木聚糖是植物细胞壁的主要成分,由主干组成β-1,4-连接D类-木糖基链,其被不同的取代基修饰,包括2-和3-连接的阿拉伯呋喃基部分(通常在谷物阿拉伯木聚糖中)和葡萄糖醛酸(特别是在谷物和硬木葡萄糖醛酸聚糖中)。木聚糖的复杂性通过乙酰基和阿魏酸酯等酯类连接物种进一步细分,后者可能将木聚糖与木质素连接(图1[链接]). 因此,木聚糖在自然环境和工业环境中的降解需要大量的酶,其中一些主要参与者包括β-木聚糖酶,β-木糖苷酶,α-葡萄糖醛酸酶、乙酰和阿魏酸酯酶以及阿拉伯呋喃糖苷酶,所有这些都需要进行深入的学术和工业研究(最近由Biely全面审查等。, 2016【Biely,P.,Singh,S.&Puchart,V.(2016),《生物技术促进》第34期,第1260-1274页。】).

[图1]
图1
木聚糖及其降解。()一种由化学基团着色的普通木聚糖的结构。箭头表示阿拉伯木聚糖活性阿拉伯呋喃糖苷酶的裂解位置。(b条)转化阿拉伯呋喃糖苷酶的反应方案,需要同时存在布伦斯特酸和碱残基。

如果我们要实现可再生能源和安全能源方面的这些社会目标,阿拉伯氧基烷被认为是一种主要的“原料”,因为它存在于许多目前被广泛用于生物燃料生产的工厂中(有关评论,请参见Lagaert等。, 2014[Lagaert,S.、Pollet,A.、Courtin,C.M.和Volckaert,G.(2014)。生物技术进展32,316-332。]; Pauly&Keegstra,2008年【Pauly,M.&Keegstra,K.(2008),《植物杂志》第54期,第559-568页。】). 鉴于阿拉伯木聚糖的降解需要一组酶发挥部分协同作用,吉尔伯特最近关于微生物降解木聚糖的工作(罗戈夫斯基等。, 2015[Rogowski,A.等人(2015),《自然公社》,第6期,第7481页。])人们对木聚糖活性酶的结构、机制和特异性非常感兴趣,特别关注侧链裂解酶及其与主干裂解木聚糖酶的潜在协同作用。由于内切木聚糖酶自身调节侧链的能力不同,这种潜在的协同作用更加复杂。特别令人感兴趣的是阿拉伯呋喃糖苷酶,它能够从木聚糖主链的2-和3-位上去除阿拉伯呋喃糖基(Araf)取代基,从而打开木聚糖主链,使其受到经典内木聚糖酶的攻击。阿拉伯呋喃糖苷酶在CAZy序列分类的GH2、GH3、GH43、GH51、GH54和GH62家族中发现(https://www.cazy.org; 伦巴第等。, 2014【Lombard,V.、Golaconda Ramulu,H.、Drula,E.、Coutinho,P.M.和Henrissat,B.(2014)。核酸研究42,D490-D495。】).

CAZY家族GH62含有许多充当阿拉伯木聚糖活性阿拉伯呋喃糖苷酶的酶等。, 2017【Wilkens,C.、Andersen,S.、Dumon,C.、Berrin,J.-G.和Svensson,B.(2017年),《生物技术促进》35,792-804。】). GH62酶的第一个三维结构出现在2014年,有来自细菌的结构报告腔色链霉菌(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.])和热紫球藻(王)等。, 2014【Wang,W.,Mai-Gisondi,G.,Stogios,P.J.,Kaur,A.,Xu,X.,Cui,H.,Turunne,O.,Savchenko,A.&Master,E.R.(2014),《应用环境微生物》,第80期,第5317-5329页。】)和两种来自玉米Ustilago maydis柄孢霉(西吉尔等。, 2014【Siguier,B.、Haon,M.、Nahoum,V.、Marcellin,M.,Burlet-Schiltz,O.、Coutinho,P.M.、Henrissat,B.、Mourey,L.、O'Donohue,M.J.、Berrin,J.-G、Tranier,S.&Dumon,C.(2014),《生物化学杂志》289、5261-5273。】). 三维结构共用一个通用的五叶片β-螺旋桨折叠有源中心在单置换机制中,保守的谷氨酸和天冬氨酸残基分别作为催化酸和催化碱,这与水解反应与异丙基构型反转相一致(图1[链接]b条). GH62酶已在CAZYpedia中进行了审查(有关审查,请参阅2018年CAZYpedia联盟[The CAZypedia Consortium(2018)。糖生物学,28,3-8。]).

在这里,我们展示了真菌GH62阿拉伯呋喃糖苷酶的三维结构嗜松塔拉菌以1.25精制与预定亚氨基葡萄糖阿拉伯呋喃糖苷酶抑制剂1,4-二脱氧-l,4-亚氨基配合物中的拆分-L(左)-阿拉伯硝醇(AraDNJ)。该复合物揭示了活性位点,并根据之前公布的数据,分析了该酶如何与阿拉伯木聚糖底物相互作用,从而从木聚糖主链上去除这些侧链。

2.材料和方法

2.1、。大分子生产和小分子合成

该酶(一种没有预测N-糖基化位点的单模GH62阿拉伯呋喃糖苷酶;GenBank MG656406)在Novozymes a/S通过标准异源表达进行克隆和表达,使用米曲霉作为表达宿主,基本上如Biely所述等。(2014【Biely,P.、Puchart,V.、Stringer,M.A.和Mörkeberg Krogh,K.B.R.(2014)。联邦公报281,3894-3903。】). 一支35岁左右的新乐队在转化体的培养物中观察到kDa,而在未转化的生产菌株的培养物中没有观察到。使用SDS–PAGE对几个似乎表达重组阿拉伯呋喃糖苷酶的转化子的表达水平进行了研究。表达1中表达水平最高的转化子后在生物反应器中,对培养液进行消毒过滤以去除菌丝。过滤后的肉汤浓度为1.8M(M)硫酸铵,过滤后(0.22µm PES过滤器;Nalge Nunc International,Nalgene实验室产品目录号595-4520)将滤液装入苯基Sepharose 6快速流动色谱柱(高分馏;GE Healthcare,美国新泽西州皮斯卡塔韦),与25M(M)HEPES pH 7.0和1.8M(M)硫酸铵;用三个体积为25的柱子清洗柱子M(M)HEPES pH值7.0,1.0M(M)硫酸铵和结合蛋白用25M(M)HEPES pH 7.0。将这些组分合并到Sephadex G-25柱上(GE Healthcare),用25M(M)HEPES pH值7.5。将这些组分应用于SOURCE 15Q色谱柱(GE Healthcare),用25M(M)以0到1000的线性梯度洗脱pH为7.5的HEPES和结合蛋白M(M)氯化钠超过10个柱体积。通过SDS–PAGE分析组分,并将含有阿拉伯呋喃糖苷酶的组分合并。

AraDNJ的合成是使用文献程序进行的(Jones等。, 1985【Jones,D.W.C.,Nash,R.J.,Bell,E.A.&Williams,J.M.(1985)。四面体Lett.26,3125-3126。】; 纳勒韦等。, 1988【Naleway,J.J.、Raetz,C.R.和Anderson,L.(1988)。羧酸研究179,199-209。】).

2.2. 结晶

结晶筛分是通过坐滴蒸汽扩散法进行的,滴液是使用蚊子晶体液体处理机器人(英国TTP Labtech)设置的,该机器人具有150个nl蛋白溶液加15096 well格式板(瑞士瑞士MRC 2孔结晶微孔板)中的nl储层溶液与54平衡µl储液罐溶液。实验是在室温下使用几个商业屏幕进行的。

进行了广泛的筛选,没有发现有希望的结果。最后,样品在pH 8.5的Tris–HCl中进行浅粒离子交换。得到的峰是不对称的,并调整运行条件以优化峰的不同区域的分离(整个梯度0–1M(M)NaCl,洗脱缓冲液10–20%时的峰分离)。这些区域的分数分别汇总和浓缩。从峰值开始,用蛋白质组分进行结晶。在使用和不使用抑制剂AraDNJ的情况下进行结晶,使用时将其与蛋白质混合,得到最终浓度为5M(M)在Crystal Screen HT条件G3中,蛋白质与抑制剂复合物的命中率最高(0.01M(M)硫酸锌,0.1M(M)MES pH 6.5,25%PEG 550 MME);这是为了进一步优化而选择的种子库存。

准备好种子储备并进行微种子基质筛选(MMS);有关最新审查,请参阅D'Arcy等。, 2014【D’Arcy,A.,Bergfors,T.,Cowan-Jacob,S.W.&Marsh,M.(2014),《结晶学报》F701117-1126。】)根据公布的协议(肖·斯图尔特等。2011年【Shaw Stewart,P.D.,Kolek,S.A.,Briggs,A.R.,Chayen,N.E.&Baldock,P.F.M.(2011),《水晶生长设计》第11期,第3432-3441页。】; 沙阿等。, 2005【Shah,A.K.,Liu,Z.-J.,Stewart,P.D.,Schubot,F.D.,Rose,J.P.,Newton,M.G.&Wang,B.-C.(2005),《结晶学报》D61,123-129。】)有两个屏幕,Crystal Screen HT和JCSG,以及一些命中条件的优化。从JCSG屏幕条件B2、G7和G10获得衍射质量的晶体。用于数据采集的数据是从条件G10中获得的,30%桩2K MME,0.2M(M)KBr.公司。通过将PEG 3350以1:2的比例(3)添加到母液中,对晶体进行冷冻保护µl聚乙二醇+6µl母液),对应于最终冷冻保护剂溶液中16.6%PEG3350和20%PEG2K。结晶条件如表1所示[链接].

表1
结晶

方法 蒸汽扩散,坐滴;多媒体信息服务
板材类型 瑞士瑞士MRC 2孔结晶微孔板
温度(K) 293
蛋白质浓度(mg毫升−1) 25
蛋白质溶液的缓冲液成分 20M(M)Tris–HCl pH值8.5,150M(M)氯化钠
储层溶液的组成 30%PEG 2K MME,0.2M(M)千比尔
体积和落差 300nl总计,1:1比率
储液罐容积(µl) 54

2.3. 数据收集和处理

所有计算都是使用来自中央处理器4套房(优胜者等。2011年[Winn,M.D.等人(2011),《晶体学报》,第67卷,第235-242页。])除非另有说明。数据收集在钻石光源(DLS)处的光束线I04-1上,至1.2分辨率和已处理2(冬季等。, 2013【Winter,G.、Lobley,C.M.C.和Prince,S.M.(2013),《水晶学报》D691260-1273。】). 数据收集和处理统计数据如表2所示[链接].

表2
数据收集统计

括号中的值用于外壳。

衍射光源 I04-1,DLS
波长(Ω) 0.93
温度(K) 100
探测器 皮拉图斯6M-F
晶体到探测器的距离(mm) 254.2
每张图像的旋转范围(°) 0.1
总旋转范围(°) 180
每张图像的曝光时间(s) 0.0375
“空间”组 P(P)21
,b条,c(c)(Å) 43.83, 88.97, 72.66
α,β,γ(°) 90、95.22、90
镶嵌度(°) 0.11
分辨率范围(Ω) 33.52–1.25 (1.27–1.25)
反射总数 457639 (14559)
独特反射次数 149344 (6813)
完整性(%) 98 (91)
科科斯群岛1/2 0.998 (0.79)
多重性 3.1(2.1)
/σ()〉 13.1 (2.9)
R(右)合并 0.044 (0.28)
R(右)相对湿度。 0.052 (0.34)
总体B类Wilson图中的因子(λ2) 5.1
†CC公司1/2的值意思是通过将数据随机拆分为两个半数据集来计算。
估计R(右)相对湿度。=R(右)合并[N个/(N个− 1)]1/2,其中N个是数据多重性,以及R(右)合并定义为[\textstyle\sum_{hkl}\sum_}|i_{i}(hkl)-\langle i(hk1)\rangle|/][\textstyle\sum_{hkl}\sum_{i} 我_{i} (香港)],其中(香港特别行政区)是反射的强度。

2.4. 结构解决和细化

该结构由MOLREP公司(Vagin&Teplyakov,2010年【Vagin,A.和Teplyakov,A.(2010),《水晶学报》,D66,22-25。】)使用彩色S.coelicolor α-L(左)-阿拉伯呋喃糖苷酶(PDB条目3wmy(3wmy); 前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.])作为搜索模型。使用链跟踪海盗,并用REFMAC公司(穆尔舒多夫等。2011年【Murshudov,G.N.,Skubák,P.,Lebedev,A.A.,Pannu,N.S.,Steiner,R.A.,Nicholls,R.A..,Winn,M.D.,Long,F.&Vagin,A.A..(2011),《晶体学报》,D67,355-367。】)使用手动模型校正迭代库特(埃姆斯利等。, 2010【Emsley,P.、Lohkamp,B.、Scott,W.G.和Cowtan,K.(2010),《水晶学报》D66、486-501。】). 最终模型的质量使用摩尔概率(陈)等。, 2010【Chen,V.B.、Arendall,W.B.、Headd,J.J.、Keedy,D.A.、Immormino,R.M.、Kapral,G.J.,Murray,L.W.、Richardson,J.S.和Richardsson,D.C.(2010),《晶体学报》,D66,12-21。】)作为的一部分菲尼克斯包装(亚当斯等。2011年【Adams,P.D.等人(2011)。方法,55,94-106。】). 决赛细化统计如表3所示[链接]。该结构物已作为入口存放在PDB中6f1页.

表3
结构解决和细化

分辨率范围(Ω) 33.52–1.25
完整性(%) 97.8
反射次数
工作集 141792
测试集 7088
最终R(右)晶体 0.120
最终R(右)自由的 0.136
Cruickshank DPI公司 0.037
不对称单元中的亚基数量 2
钢筋混凝土α亚基之间的偏差(Ω) 0.221
非H原子数量
蛋白质 4698
离子 4
配体 18
658
总计 5378
R.m.s.偏差
债券(澳元) 0.014 (0.020)
角度(°) 1.5 (1.9)
平均B类因子(λ2)
蛋白质
  链条A类 7.3
  链条B类 7.7
离子  
  2+ 3.3
  2+(第一) 8.8
  2+(第二) 8.4
配体 6.7
18.8
拉马钱德兰阴谋  
有利(%) 96.4
异常值(%) 0.33
摩尔概率分数 0.85
†Ramachandran图分析由摩尔概率(陈)等。, 2010【Chen,V.B.、Arendall,W.B.、Headd,J.J.、Keedy,D.A.、Immormino,R.M.、Kapral,G.J.,Murray,L.W.、Richardson,J.S.和Richardsson,D.C.(2010),《晶体学报》,D66,12-21。】).

2.5. 等温滴定量热法

用等温滴定法测定配体亲和力热量测定法(ITC)。ITC在25°C下进行M(M)HEPES pH值7.0,100M(M)NaCl使用Malvern MacroCal Auto-iTC200量热计。注射器中的配体为1.8M(M)并被滴定到含有112µM(M)酶的溶液。检测重复进行。使用PEAQ-ITC分析软件(Malvern)。

3.结果和讨论

结构(PDB条目6英尺1英寸)在1.25处进行了求解和细化分辨率(表3[链接]). 蛋白质链可以从残基25追溯到325,并且包含结构钙离子和锌离子。五刃β-螺旋桨结构(图2[链接])与先前发表的GH62酶有很强的相似性,尤其是来自天竺葵(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.])和热紫球藻(王)等。, 2014【Wang,W.,Mai-Gisondi,G.,Stogios,P.J.,Kaur,A.,Xu,X.,Cui,H.,Turunne,O.,Savchenko,A.&Master,E.R.(2014),《应用环境微生物》,第80期,第5317-5329页。】);300个残基与72和69%的序列一致性和r.m.s.Cα偏差为0.58和0.68分别由高PDB折叠(Krissinel&Henrick,2004)【Krissinel,E.&Henrick,K.(2004),《水晶学报》,D60,2256-2268。】)得分分别为0.95和0.94。非对称单元具有较高的结构相似性(r.m.s.d.为0.22ω),在外表面上有一些构象差异,特别是在晶体接触区域。

[图2]
图2
的三维结构和配体结合松毛虫GH62阿拉伯呋喃糖苷酶与抑制剂AraDNJ的复合物。()从N端(蓝色)到C端(红色)的三维结构颜色。金属离子显示为阴影球体,AraDNJ显示为CPK模型。(b条)AraDNJ的化学结构。(c(c))AraDNJ绑定的ITC数据(K(K)d日24±0.4µM(M)). (d日)结合GH62,2的AraDNJ的观测电子密度F类o个负极F类c(c)(最大可能性/σA类-重量)1.25在1处轮廓分明σ图中显示了催化酸Glu212和碱Asp52,以及一个用于亲核攻击的水分子。(e(电子))的部分重叠松毛虫GH62阿拉伯呋喃糖苷酶(棕色,AraDNJ呈绿色)天竺葵GH62阿拉伯呋喃糖苷酶(PDB条目3个月2; 淡蓝色,绿色为木五糖),突出了高度保守的结合中心和阿拉伯木聚糖链的识别装置。结构图用中央处理器4毫克(麦克尼古拉斯等。2011年[McNicholas,S.,Potterton,E.,Wilson,K.S.和Noble,M.E.M.(2011)。晶体学报,D67386-394。]).

在这两种金属离子中,钙2+离子的位置基本上与之前报道的一样,例如在天竺葵酶(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.]). 然而,这种结构钙2+离子(接近但不撞击活性中心)由六个水分子和Glu215的羧酸O原子配位。这与之前的结构不同,其中Ca2+离子由一对His和Gln配位,在这里被一个氢键合到Ser278(代替His)和Glu215(代替先前观察到的Gln)的水分子取代。松毛虫酶有额外的锌2+离子来源于结晶条件下的“种子原料”(见上文)元素。其中一座桥A类B类晶格中的分子,可能有助于晶格的形成,与分子的His180配位A类和氨基末端NH2分子中Ser24的羰基和Glu220的侧链B类.另一个锌2+离子由分子中的Glu88配位B类来自对称相关分子的His180B类和三种水。

的结构松毛虫在假定的阿拉伯呋喃糖苷酶抑制剂AraDNJ存在的情况下测定GH62阿拉伯呋喃喃糖酶(图2[链接]b条),这允许进一步确认催化装置。该化合物已被用于研究其他阿拉伯呋喃糖苷酶(Axamawaty等。, 1990[Axamawaty,M.T.,Fleet,G.W.,Hannah,K.A.,Namgong,S.K.&Sinnott,M.L.(1990).生物化学杂志266245-249。]; 赫姆斯沃思等。, 2016[Hemsworth,G.R.,Thompson,A.J.,Stepper,J.,Sobala,Ł.F.,Coyle,T.,Larsbrink,J.、Spadiut,O.,Goddard-Borger,E.D.,Stubbs,K.A.,Brumer,H.&Davies,G.J.(2016),《开放生物学》第6期,第160142页。])以及开发其他糖苷酶抑制剂的支架(Siguier等。, 2014【Siguier,B.、Haon,M.、Nahoum,V.、Marcellin,M.,Burlet-Schiltz,O.、Coutinho,P.M.、Henrissat,B.、Mourey,L.、O'Donohue,M.J.、Berrin,J.-G、Tranier,S.&Dumon,C.(2014),《生物化学杂志》289、5261-5273。】; 梅纳·巴拉根等。, 2016[Mena-Barragán,T.,García-Moreno,M.I.,Nanba,E.,Higaki,K.,Concia,a.L.,Clapés,P.,Garc-Fernández,J.M.&Ortiz Mellet,C.(2016),《欧洲医学化学杂志》121,880-891.]). 氮糖和亚氨基糖通常被认为是保留糖苷的良好抑制剂水解酶类由于它们的内环N原子可以被质子化,因此模拟了被认为在糖苷水解过程中处于过渡状态的假定正电荷。此外,N原子与酸/碱和亲核剂在这些酶的活性部位(例如,参见Gloster等。, 2007【Gloster,T.M.,Meloncelli,P.,Stick,R.,Zechel,D.,Vasella,A.&Davies,G.J.(2007),《美国化学学会杂志》129,2345-2354。】). GH62酶正在转化,因此没有合适的位置亲核剂。因此,让我们惊讶的是,AraDNJ作为一种具有良好密度的抑制剂。因此,通过等温滴定法测定AraDNJ的结合常数热量测定法(图2[链接]c(c)),露出一个出奇的紧K(K)d日24±0.4µM(M)在糖苷酶中,亚氨基糖苷与糖苷酶活性位点结合得如此好而没有紧密的酶衍生亲核作用是罕见的,但其他例子包括CAZY家族GH6,其中纤维二糖衍生的异精胺已被用于取得良好效果,甚至报道了催化过程中涉及的底物畸变(Gloster等。, 2007【Gloster,T.M.,Meloncelli,P.,Stick,R.,Zechel,D.,Vasella,A.&Davies,G.J.(2007),《美国化学学会杂志》129,2345-2354。】). 在这里,AraDNJ以一种潜在的过渡状态结合,模仿4E类构象。正如所料,AraDNJ绑定在与Araf自身相同的位置(例如,请参见PDB条目4o8点; 等。, 2014【Wang,W.,Mai-Gisondi,G.,Stogios,P.J.,Kaur,A.,Xu,X.,Cui,H.,Turunne,O.,Savchenko,A.&Master,E.R.(2014),《应用环境微生物》,第80期,第5317-5329页。】)从O2和O3到Asp160,从O3到Gln120,从O56到Asp52,形成类似的氢键。Ile159的侧链也可能存在疏水性接触。带正电的N原子(此处取代阿拉伯糖的内环O原子)没有直接相互作用,但结构显示水分子处于平衡状态3.1“在”呋喃糖环“下面”,在那里它与Asp52(假定的催化碱)氢键结合,这与以前的研究一致(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.]; 等。, 2014【Wang,W.,Mai-Gisondi,G.,Stogios,P.J.,Kaur,A.,Xu,X.,Cui,H.,Turunne,O.,Savchenko,A.&Master,E.R.(2014),《应用环境微生物》,第80期,第5317-5329页。】)和反转机构(图1[链接]b条). Glu212,假定的酸,用于侧向反对的任何离开基团的质子化(图2[链接]d日). 值得注意的是,带正电的N原子正好位于已公布的同系物Tris络合物的带正电N原子所在的位置(例如,参见PDB条目3个月2,的天竺葵GH62酶;前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.])强调了这些酶已经进化为稳定带正电荷的过渡态,即使没有保留酶可用的直接电荷相互作用的帮助。

这个松毛虫根据过去对GH62酶的低聚木糖复合物的研究,GH62酶与AraDNJ的复合物提供了对GH62酶类从阿拉伯木聚糖中去除阿拉伯呋喃糖苷修饰物的机制的进一步了解。木糖复合物覆盖层(PDB入口3个月2)的天竺葵GH62酶(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.]; 图2[链接]e(电子))显示了木聚糖链的相互作用表面如何在两种酶之间高度保守,两个芳香平台(Phe211、Tyr312和Trp121)和一些氢键相互作用(Arg237、Asn313和Asp177)是不变的,这表明配体识别是类似的。事实上,AraDNJ综合体的C1位于1.9来自PDB入口中“第二个”(来自还原端)木糖部分的O3原子的Å3个月2,强调了松毛虫GH62酶可以作为一种阿拉伯呋喃糖苷酶,对O3取代的木聚糖具有活性,正如最初针对天竺葵GH62酶(前原诚司等。, 2014[前原诚司,T.,藤本,Z.,伊奇诺泽,H.,Michikawa,M.,Harazono,K.&Kaneko,S.(2014).生物化学杂志289,7962-7972.]),尽管如果木聚糖链偶尔通过活性位点反转,也可以考虑在O2位置的作用(考虑到木聚糖的内部假对称性,这可能是木聚糖的作用)。

这个嗜皮诺T因此,GH62酶增加了围绕天然和工业阿拉伯木聚糖降解中这些关键角色的越来越多的文献。它展示了阿拉伯呋喃糖苷模拟物如何位于酶的活性部位,以及该酶如何识别和裂解阿拉伯木聚糖。此外,亚氨基糖苷酶抑制剂在研究转化酶结构和功能方面的非经典应用应鼓励此类化合物在未来的进一步非直观应用。

脚注

当前地址:爱尔兰都柏林4号贝尔菲尔德斯蒂略根路都柏林大学学院化学学院。

致谢

作者感谢诺维信A/S为这项工作提供了部分资金。GJD是英国皇家学会Ken Murray研究员。KAS感谢澳大利亚研究委员会,TC感谢澳大利亚政府、西澳大利亚大学(UWA)和UWA显微镜、表征和分析中心。作者还要感谢Diamond光源提供的光束时间(提案mx13587),以及光束线I04的工作人员在晶体测试和数据收集方面提供的帮助。

工具书类

第一次引用P.D.亚当斯。等。(2011).方法,55, 94–106. 科学网 交叉参考 中国科学院 公共医学 谷歌学者
第一次引用Axamawaty,M.T.、Fleet,G.W.、Hannah,K.A.、Namgong,S.K.和Sinnott,M.L.(1990)。生物化学。J。 266, 245–249. 交叉参考 谷歌学者
第一次引用Biely,P.、Puchart,V.、Stringer,M.A.和Mörkeberg Krogh,K.B.R.(2014)。FEBS J公司。 281, 3894–3903. 交叉参考 谷歌学者
第一次引用Biely,P.、Singh,S.和Puchart,V.(2016)。生物技术。副词。 34, 1260–1274. 交叉参考 谷歌学者
第一次引用Chen,V.B.、Arendall,W.B.、Headd,J.J.、Keedy,D.A.、Immormino,R.M.、Kapral,G.J.,Murray,L.W.、Richardson,J.S.和Richardsson,D.C.(2010)。阿克塔·克里斯特。D类66, 12–21. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用D’Arcy,A.、Bergfors,T.、Cowan-Jacob,S.W.和Marsh,M.(2014)。阿克塔·克里斯特。F类70, 1117–1126. 科学网 交叉参考 IUCr日志 谷歌学者
第一次引用Emsley,P.、Lohkamp,B.、Scott,W.G.和Cowtan,K.(2010年)。阿克塔·克里斯特。D类66, 486–501. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Gloster,T.M.、Meloncelli,P.、Stick,R.、Zechel,D.、Vasella,A.和Davies,G.J.(2007年)。美国化学杂志。Soc公司。 129, 2345–2354. 交叉参考 谷歌学者
第一次引用Jones,D.W.C.、Nash,R.J.、Bell,E.A.和Williams,J.M.(1985年)。四面体Lett。 26, 3125–3126. 交叉参考 谷歌学者
第一次引用Hemsworth,G.R.,Thompson,A.J.,Stepper,J.,Sobala,Ł。F.,Coyle,T.,Larsbrink,J.,Spadiut,O.,Goddard-Borger,E.D.,Stubbs,K.A.,Brumer,H.&Davies,G.J.(2016)。打开Biol。 6,160142交叉参考 谷歌学者
第一次引用Krissinel,E.和Henrick,K.(2004年)。阿克塔·克里斯特。D类60, 2256–2268. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Lagaert,S.、Pollet,A.、Courtin,C.M.和Volckaert,G.(2014)。生物技术。副词。 32, 316–332. 交叉参考 谷歌学者
第一次引用Lombard,V.、Golaconda Ramulu,H.、Drula,E.、Coutinho,P.M.和Henrissat,B.(2014)。核酸研究。 42,D490–D495科学网 交叉参考 中国科学院 公共医学 谷歌学者
第一次引用前原诚司(Maehara,T.)、藤本诚司(Fujimoto,Z.)、伊奇诺泽(Ichinose,H.)、Michikawa,M.、Harazono,K.和Kaneko,S.(2014)。生物学杂志。化学。 289, 7962–7972. 交叉参考 谷歌学者
第一次引用McNicholas,S.、Potterton,E.、Wilson,K.S.和Noble,M.E.M.(2011年)。阿克塔·克里斯特。D类67, 386–394. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Mena Barragán,T.、García-Moreno,M.I.、Nanba,E.、Higaki,K.、Concia,a.L.、Clapés,P.、García Fernández,J.M.和Ortiz Mellet,C.(2016)。欧洲医学化学杂志。 121, 880–891. 谷歌学者
第一次引用Murshudov,G.N.、Skubák,P.、Lebedev,A.A.、Pannu,N.S.、Steiner,R.A.、Nicholls,R.A、Winn,M.D.、Long,F.&Vagin,A.(2011)。阿克塔·克里斯特。D类67, 355–367. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Naleway,J.J.、Raetz,C.R.和Anderson,L.(1988年)。碳水化合物。物件。 179, 199–209. 交叉参考 谷歌学者
第一次引用Pauly,M.和Keegstra,K.(2008年)。工厂J。 54, 559–568. 交叉参考 谷歌学者
第一次引用A.罗戈夫斯基。等。(2015).自然社区。 6, 7481. 交叉参考 谷歌学者
第一次引用Shah,A.K.、Liu,Z.-J.、Stewart,P.D.、Schubot,F.D.、Rose,J.P.、Newton,M.G.和Wang,B.-C.(2005)。阿克塔·克里斯特。D类61, 123–129. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Shaw Stewart,P.D.、Kolek,S.A.、Briggs,A.R.、Chayen,N.E.和Baldock,P.F.M.(2011)。克里斯特。增长设计。 11, 3432–3441. 科学网 交叉参考 中国科学院 谷歌学者
第一次引用Siguier,B.、Haon,M.、Nahoum,V.、Marcellin,M.,Burlet-Schiltz,O.、Coutinho,P.M.、Henrissat,B.、Mourey,L.、O'Donohue,M.J.、Berrin,J.-G.、Tranier,S.和Dumon,C.(2014)。生物学杂志。化学。 289, 5261–5273. 交叉参考 谷歌学者
第一次引用萨默维尔,C.(2007)。货币。生物学。 17,R115–R119交叉参考 谷歌学者
第一次引用CAZypedia联盟(2018年)。糖生物学,28, 3–8. 交叉参考 谷歌学者
第一次引用Vagin,A.和Teplyakov,A.(2010年)。阿克塔·克里斯特。D类66, 22–25. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Wang,W.,Mai-Gisondi,G.,Stogios,P.J.,Kaur,A.,Xu,X.,Cui,H.,Turunne,O.,Savchenko,A.&Master,E.R.(2014)。申请。环境。微生物。 80,5317–5329交叉参考 谷歌学者
第一次引用Wilkens,C.、Andersen,S.、Dumon,C.、Berrin,J.-G和Svensson,B.(2017)。生物技术。副词。 35, 792–804. 交叉参考 谷歌学者
第一次引用Winn医学博士。等。(2011).阿克塔·克里斯特。D类67, 235–242. 科学网 交叉参考 中国科学院 IUCr日志 谷歌学者
第一次引用Winter,G.、Lobley,C.M.C.和Prince,S.M.(2013)。阿克塔·克里斯特。D类69,1260–1273页科学网 交叉参考 中国科学院 IUCr日志 谷歌学者

这是一篇根据知识共享署名(CC-BY)许可证它允许在任何介质中不受限制地使用、分发和复制,前提是引用了原始作者和来源。

期刊徽标结构生物学
通信
国际标准编号:2053-230X