×

纳米剪切液滴:流体体积、相场和无滑移分子动力学。 (英语) Zbl 1500.76095号

小结:在各种润湿现象和技术应用中,两种不互溶流体和固体表面之间的三相接触线会发生运动。连续体理论的一个挑战是如何有效地描述接触线附近的分子运动。在这里,我们描述了移动接触线的分子过程,以评估两种不同的连续两相模型的准确性。具体来说,两个移动板之间二维液滴的分子动力学模拟用于创建不同毛细管数和接触角的参考数据。我们使用了一个简单的点电荷/扩展水模型。与伦纳德-琼斯模型相比,该模型提供了一个非常小的滑移和更真实的分子物理表示。根据分子动力学参考数据中的液滴位移校准了Cahn-Hilliard相场模型和流体体积模型。结果表明,校准后的连续介质模型能够准确地捕捉不同毛细管数和接触角下的液滴位移和液滴破碎。然而,我们也观察到连续模拟和原子模拟在描述瞬态和非稳态液滴行为方面的差异,特别是在接近动态润湿转变的情况下。剪切液滴的分子动力学可以深入了解前进和后退接触线所经历的线摩擦。所提出的结果将成为开发纳米级流体动力学精确连续体模型的垫脚石。

理学硕士:

76T10型 液气两相流,气泡流
76T30型 三个或更多组件流
76M99型 流体力学基本方法
PDF格式BibTeX公司 XML格式引用

参考文献:

[1] Abraham,M.J.,Murtola,T.,Schulz,R.,Páll,S.,Smith,J.C.,Hess,B.&Lindahl,E.2015GROMACS:通过从笔记本电脑到超级计算机的多级并行进行高性能分子模拟。软件X1-2,19-25。
[2] Afkhami,S.2022动态润湿现象数值模拟的挑战:综述。货币。操作。胶体界面科学57101523。
[3] Afkhami,S.、Buongiorno,J.、Guion,A.、Popinet,S.,Saade,Y.、Scardovelli,R.&Zaleski,S.2018接触线动力学和强制脱湿数值模型中的过渡。J.计算。物理374,1061-1093。
[4] Afkhami,S.&Bussmann,M.2008将接触角应用于2D VOF模拟的高度函数。国际期刊数字。方法。液体57(4),453-472。
[5] Afkhami,S.,Gambaryan-Roisman,T.&Pismen,L.M.2020对润湿现象的纳米物理提出了挑战。欧洲物理学会。J: 规格顶部2291735-1738。
[6] Afkhami,S.、Zaleski,S.&Bussmann,M.2009-将动态接触角应用于VOF模拟的网格相关模型。J.计算。《物理学》228(15),5370-5389·兹比尔1280.76029
[7] Aniszewski,W.等人,2021PArallel,鲁棒接口模拟器(巴黎)。计算。物理学。Commun.263,107849。
[8] 巴克利,P.L.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Lukes,J.R.2019Cahn-Hilliard流动性——来自分子动力学的流体-流体界面。物理学。流体31(9),092107。
[9] Bernardi,S.、Todd,B.D.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Searles,D.J.2010Thermostating高承压流体。化学杂志。《物理学》132(24),244706。
[10] T.D.布莱克;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Haynes,J.M.1969液-液置换动力学。《胶体界面科学杂志》30(3),421-423。
[11] Blake,T.D.1993《动态接触角和润湿动力学》,《表面活性剂科学系列》,第49卷,第5章,第251-309页。马赛尔·德克尔公司。
[12] T.D.Blake、J.-C.Fernandez-Toledano、G.&De Coninck,J.2015强制润湿和流体动力学辅助。物理学。流体27(11),112101。
[13] Bonn,D.、Eggers,J.、Indekeu,J.和Meunier,J;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Rolley,E.2009润湿和铺展。修订版Mod。物理81,739-805。
[14] Borg,M.K.,Lockerby,D.A.,Ritos,K.&Reese,J.M.2018水通过实验室级纳米管膜的多尺度模拟。J.成员。科学567115-126。
[15] Brackbill,J.U.,Kothe,D.B.&Zemach,C.1992A:模拟表面张力的连续介质方法。J.计算。《物理学》100(2),335-354·Zbl 0775.76110号
[16] Briant,A.J.、Wagner,A.J.&Yeomans,J.M.2004接触线运动的格子Boltzmann模拟。I.液气系统。物理学。修订版E69(3),031602。
[17] Briant,A.J.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Yeomans,J.M.2004接触线运动的格子Boltzmann模拟。二、。二元流体。物理学。修订版E69(3),031603。
[18] Bugel,M.,Galliéro,G.&Caltagirone,J.-P.2011涉及界面的流体流动的混合原子组分模拟。微流体纳米流体10(3),637-647。
[19] Carlson,A.2012毛细管和动态润湿。KTH皇家理工学院博士论文。
[20] Carlson,A.、Do-Quang,M.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Amberg,G.2011快速动态润湿中的耗散。《流体力学杂志》682、213-240。
[21] Chan,T.S.,Kamal,C.,Snoeijer,J.H.,Sprittles,J.E.&Eggers,J.2020Cox-Voinov滑移理论。《流体力学杂志》900,A8。
[22] Chan、T.S.、Snoeijer、J.H.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Eggers,J.2012《强迫润湿转变理论》。物理学。流体24(7),072104。
[23] Chen,L.,Kang,Q.,Mu,Y.,He,Y.-L.&Tao,W.-Q.2014赝势多相晶格Boltzmann模型的关键评述:方法和应用。国际热质传递杂志76210-236。
[24] Cox,R.G.1986液体在固体表面扩散的动力学。第1部分:。粘性流。《流体力学杂志》168169-194·Zbl 0597.76102号
[25] Deng,Y.,Chen,L.,Liu,Q.,Yu,J.&Wang,H.2016部分湿润固体上的脱湿和涂层纳米视图。《物理学杂志》。化学。Lett.7(10),1763-1768年。
[26] Devauchelle,O.Josserand,C.&Zaleski,S.2007多孔介质上的强制脱湿。《流体力学杂志》574,343-364。
[27] Eggers,J.2004强制脱湿的流体动力学理论。物理学。修订稿93(9),094502。
[28] Eggers,J.2005后退和前进接触线的存在。物理学。液体17,082106·Zbl 1187.76135号
[29] Eggleston,J.J.、Mcfadden,G.B.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Voorhees,P.W.2001A高度各向异性界面能的相场模型。物理D150(1-2),91-103。
[30] 2004潮湿空气中的水蒸气和饱和压力。[在线]网址:https://www.engineeringtoolbox.com/water-svapor-saturation-pressure-air-d_689.html【2020年11月3日访问】。
[31] 2014年气体-动态粘度。[在线]网址:https://www.engineeringtoolbox.com/gases-absolute-dynamic-visocity-d_1888.html【2020年11月3日访问】。
[32] Eriksson,M.等人,2019超疏水表面上气体弯月面形成的直接观察。ACS Nano13(2),2246-2252。
[33] Fernández-Toledano,J.-C.,Blake,T.D.&De Coninck,J.2019接触线波动和动态润湿。《胶体界面科学杂志》540,322-329。
[34] Fernández-Toledano,J.-C.,Blake,T.D.&De Coninck,J.2021仔细观察:微观和表观动态接触角的分子动力学研究。《胶体界面科学杂志》587,311-323。
[35] Fernández-Toledano,J.C.,Blake,T.D.,De Coninck,J.&坎杜奇,M.2020类水液体移动接触线的隐藏微观寿命。物理学。流体版本5(10),104004。
[36] Flekköy,E.G.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Rothman,D.H.1996波动流体动力界面:理论与模拟。物理学。版本E53(2),1622-1644。
[37] 弗利顿,J.C.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;King,J.R.2004牛顿流体和幂律流体的表面张力驱动脱湿。《工程数学杂志》50(2-3),241-266·兹比尔1073.76003
[38] Fullana,T.、Zaleski,S.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Popinet,S.2020用流体体积法测定窗帘涂层的动态润湿失效。欧洲物理学会。J.:规范顶部229(10),1923-1934。
[39] Gao,P.&Lu,X.-Y.2013关于Couette流中的润湿动力学。《流体力学杂志》724,R1。
[40] Gentner,F.、Ogonowski,G.&De Coninck,J.2003强迫润湿动力学:分子动力学研究。朗缪尔19(9),3996-4003。
[41] Goga,N.、Rzepiela,A.J.、De Vries,A.H.、Marrink,S.J.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Berendsen,H.J.C.2012 Langevin和DPD动力学的高效算法。化学杂志。理论计算8(10),3637-3649。
[42] Gunstensen,A.K.、Rothman,D.H.、Zaleski,S.&Zanetti,G.1991不混溶流体的格子Boltzmann模型。物理学。修订版A43(8),4320。
[43] Hadjiconstantinou,N.G.1999.混合原子成分配方和移动接触线问题。J.计算。《物理学》154(2),245-265·Zbl 0935.81080号
[44] Hartmann,M.、Fricke,M.,Weimar,L.、Gründing,D.、Marić,T.、Bothe,D.&Hardt,S.2021疏水条带上毛细管桥的断裂动力学。国际多相流杂志140,103582。
[45] Hecht,F.2012 FreeFem++的新发展。J.数字。数学20(3-4),251-265·Zbl 1266.68090号
[46] Herrero,C.、Omori,T.、Yamaguchi,Y.&Joly,L.2019分子动力学中流体动力壁位置的剪切力测量。化学杂志。《物理学》151(4),041103。
[47] Hocking,L.M.2001Meniscus抽水和排水。Eur.J.应用。数学12(3),195-208·Zbl 0987.76018号
[48] Huang,D.M.、Sendner,C.、Horinek,D.、Netz,R.R.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Bocquet,L.2008水滑移与接触角:准普适关系。物理学。修订稿101(22),226101。
[49] 嗯,C.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Scriven,L.E.1971固体/液体/流体接触线稳态运动的流体动力学模型。《胶体界面科学杂志》35(1),85-101。
[50] Jackmin,D.2000扩散流体界面的接触线动力学。《流体力学杂志》402,57-88·Zbl 0984.76084号
[51] Jacqmin,D.2004液-液系统中润湿失效的发生。《流体力学杂志》517,209-228·Zbl 1131.76316号
[52] Johansson,P.、Carlson,A.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Hess,B.2015《润湿动力学中的水基质物理化学》。《流体力学杂志》781,695-711·Zbl 1359.76035号
[53] Johansson,P.&Hess,B.2018动态润湿中接触线摩擦的分子起源。物理学。流体版本3(7),074201。
[54] Kalliadasis,S.、Bielarz,C.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Homsy,G.M.2000稳定的自由表面薄膜在地形上流动。物理学。流体12(8),1889-1898。
[55] Kamali,M.R.,Gillissen,J.J.J.,Sundaresan,S.&Van Den Akker,H.E.A.2011晶格玻尔兹曼模拟中无滑移的接触线运动。化学。工程科学66(14),3452-3458。
[56] Kronbichler,M.&Kreiss,G.2017A毛细管驱动接触点动力学宏观模型的相场微尺度增强。J.计算。多相流9(3),114-126。
[57] Kumar,S.2015印刷过程中的液体转移:带有移动接触线的液体桥。每年。流体力学版次47,67-94。
[58] 拉希斯,美国;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;巴赫里,S.2020-2022https://github.com/UgisL/FreeFEM-NS-CH。
[59] Lācis,U.、Johansson,P.、Fullana,T.、Hess,B.、Amberg,G.、Bagheri,S.和amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Zaleski,S.2020无滑移基板上稳定移动的水接触线。欧洲物理学会。J.:规格顶部2291897-1921。
[60] Latva-Kokko,M.&Rothman,D.H.2007格子Boltzmann模型中动态接触角的缩放。物理学。修订稿98(25),254503。
[61] Laurila,T.、Carlson,A.、Do-Quang,M.、Ala-Nissila,T.&Amberg,G.2012范德瓦尔斯流体中沸腾的热力学流体力学。物理学。修订版E85(2),026320。
[62] Legendre,D.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Maglio,M.2015移动接触线模拟数值模型之间的比较。计算。液体113,2-13。
[63] Liu,C.-Y.,Carvalho,M.S.&Kumar,S.2019a幕墙涂层的动态润湿破坏:模型预测和实验观察的比较。化学。工程科学.195,74-82。
[64] Liu,H.,Zhang,J.,Capobianchi,P.,Borg,M.K.,Zhang-Y.&Wen,D.2021A基于分子动力学的具有自洽边界条件的多尺度流体体积法。物理学。流感33(6),2004年6月。
[65] Liu,Q.,Yu,J.&Wang,H.2019b使用绝对光滑的固体表面揭示润湿起源的还原荒谬方法。arXiv:1901.04642。
[66] 马加莱蒂(F.Magaletti)、皮卡诺(F.Picano)、奇纳皮(M.Chinappi)、马里诺(L.Marino)和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Casciola,C.M.2013二元流体Cahn-Hilliard/Navier-Stokes模型的尖锐界面极限。《流体力学杂志》714,95-126·Zbl 1284.76116号
[67] Mohand,H.S.H.,Hoang,H.,Galliero,G.&Legendre,D.2019关于在流体体积求解器中使用摩擦模型模拟动态接触线。J.计算。《物理学》393、29-45·Zbl 1452.76063号
[68] Navier,C.-L.1823Mémoire sur les lois du movement des fluides。法国科学院皇家科学院(1823),389-440。
[69] Nold,A.,González Macdowell,L.,Sibley,D.N.,Goddard,B.D.&Kalliadasis,S.2018使用密度泛函理论的平衡三相接触线附近:垂直于流体界面的密度分布。《分子物理学》116(17),2239-2243。
[70] Orejon,D.,Sefiane,K.&Shanahan,M.E.R.2011蒸发液滴的粘滑:基质疏水性和纳米粒子浓度。朗缪尔27(21),12834-12843。
[71] Pellegrino,M.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Hess,B.2022剪切液滴的分子动力学模拟(1.0.0)[数据集]。泽诺。https://doi.org/10.5281/zenodo.5997091。
[72] Perumanath,S.、Borg,M.K.、Chubynsky,M.V.、Sprittles,J.E.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Reese,J.M.2019水滴聚合是由热运动引发的。物理学。修订稿122(10),104501。
[73] 皮斯曼,L.M.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Eggers,J.2008动接触线的可解性条件。物理学。修订版E78(5),056304。
[74] 皮斯曼,L.M.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Pomeau,Y.2000扩散界面模型中与流体动力学耦合的分离势和薄液体层的扩散。物理学。修订版E62(2),2480。
[75] Qian,T.,Wang,X.-P.&Sheng,P.2003不混溶流动的分子尺度接触线流体动力学。物理学。版本E68(1),016306。
[76] Qian,T.,Wang,X.-P.&Sheng,P.2006动接触线流体力学的变分方法。《流体力学杂志》564、333-360·Zbl 1178.76296号
[77] Renardy,M.、Renardi,Y.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Li,J.2001使用流体体积法的移动接触线问题的数值模拟。J.计算。《物理学》171(1),243-263·Zbl 1044.76051号
[78] Sbragaglia,M.,Sugiyama,K.&Biferale,L.2008Couette流中的润湿失效和接触线动力学。《流体力学杂志》614,471-493。
[79] Seppecher,P.1996《Cahn-Hilliard理论中的移动接触线》。国际工程科学杂志34(9),977-992·Zbl 0899.76042号
[80] Shan,X.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Chen,H.1993Lattice Boltzmann模型,用于模拟多相多组分流动。物理学。版本E47(3),1815年。
[81] Shikhmurzaev,Y.D.1994湿润流体动力学的数学建模。流体动力学。第13(1)号决议,第45-64页。
[82] Shikhmurzaev,Y.D.1997液体/液体/固体系统中的移动接触线。《流体力学杂志》334,211-249·Zbl 0887.76021号
[83] Singh,K.,Jung,M.,Brinkmann,M.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Seemann,R.2019多孔介质中以毛细管为主的流体驱替。每年。《流体力学》第51期,第429-449页·Zbl 1412.76090号
[84] Smith,E.R.、Müller,E.A.、Craster,R.V.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Matar,O.K.2016A使用分子动力学参数化的波动接触角行为的Langevin模型。柔软哑光12(48),9604-9615。
[85] Smith,E.R.,Theodorakis,P.E.,Craster,R.V.&;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Matar,O.K.2018移动接触线:链接分子动力学和连续尺度建模。朗缪尔34(42),12501-12518。
[86] Snoeijer,J.H.2006大坡度自由表面流动:超越润滑理论。物理学。液体18(2),021701。
[87] Snoeijer,J.H.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Andreotti,B.2013移动接触线:尺度、状态和动态转变。每年。《流体力学评论》45,269-292。
[88] Snoeijer,J.H.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Eggers,J.2010脱湿边缘的渐近分析。物理学。修订版E82(5),056314。
[89] Soddemann,T.、Dünweg,B.&Kremer,K.2003耗散粒子动力学:平衡和非平衡分子动力学模拟的有用恒温器。物理学。修订版E68(4),046702。
[90] Soligo,G.、Roccon,A.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Soldati,A.2021带有水滴和气泡的湍流:数值模拟能告诉我们什么-弗里曼学者讲座。事务处理。ASME流体工程杂志143(8),080801。
[91] Spelt,P.D.M.2005A,模拟具有多个滞后移动接触线的流动的水平集方法。J.计算。《物理学》207(2),389-404·Zbl 1213.76127号
[92] Stephan,S.、Liu,J.、Langenbach,K.、Chapman,W.G.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Hasse,H.2018Lennard-Jones截断和移位流体的汽液界面:分子模拟、密度梯度理论和密度泛函理论的比较。《物理学杂志》。化学。C122(43),24705-24715。
[93] Sui,Y.、Ding,H.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Spelt,P.D.M.2014移动接触线流动的数值模拟。每年。《流体力学评论》46(1),97-119。
[94] Sundin,J.、Zaleski,S.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Bagheri,S.2021毛细波引起的液浸表面粗糙度。《流体力学杂志》915,R6。
[95] P.A.汤普森;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Troian,S.M.1997A固体表面液体流动的一般边界条件。《自然》389(6649),360。
[96] Thormann,E.、Simonsen,A.C.、Hansen,P.L.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Mouritsen,O.G.2008疏水表面之间桥接纳米气泡诱导力的力跟踪滞后和温度依赖性。ACS Nano2(9),1817-1824年。
[97] Tornberg,A.-K和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Engquist,B.2000A多相流应用的基于有限元的水平设置方法。计算。视觉。科学3(1-2),93-101·Zbl 1060.76578号
[98] 瓦尔马(A.Varma)、罗伊(A.Roy)和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Puthenveettil,B.A.2021对移动接触线附近流动的初步影响。《流体力学杂志》924,A36。
[99] 维拉纽埃娃(W.&Villanueva);amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Amberg,G.2006一些通用毛细管驱动流。《国际多相流杂志》32(9),1072-1086。
[100] Voinov,O.1976润湿流体力学。流体动力学11,714-721。
[101] Wang,H.2019从接触线结构到润湿动力学。朗缪尔35(32),10233-10245。
[102] Wang,L.&Mccarthy,T.J.2013毛细管桥的剪切变形和破坏:接触角分析之外的润湿信息。朗缪尔29(25),7776-7781。
[103] 韦茅斯,G.D.&Yue,D.K.-P.2010笛卡尔梁自由表面模拟的保守流体体积法。J.计算。《物理学》229(8),2853-2865·Zbl 1307.76064号
[104] Wilson,M.C.T.、Summers,J.L.、Shikhmurzaev,Y.D.、Clarke,A.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Blake,T.D.2006动态接触角的非局部水动力影响:滑移模型与实验。物理学。修订版E73(4),041606。
[105] Xu,X.,Di,Y.&Yu,H.2018具有移动接触线广义Navier滑移边界条件的相场模型的尖锐界面极限。《流体力学杂志》849,805-833·Zbl 1415.76666号
[106] 岳,P.&Feng,J.J.2011移动接触线Cahn-Hilliard模型中的墙能量松弛。物理学。流体23(1),012106。
[107] Yue,P.,Zhou,C.和;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Feng,J.J.2010移动接触线Cahn-Hilliard模型的尖锐界面极限。《流体力学杂志》645,279-294·Zbl 1189.76074号
[108] Zhang,J.,Borg,M.K.&Reese,J.M.2017动态润湿的多尺度模拟。国际热质传递杂志115,886-896。
此参考列表基于出版商或数字数学图书馆提供的信息。其项与zbMATH标识符进行启发式匹配,可能包含数据转换错误。在某些情况下,zbMATH Open的数据对这些数据进行了补充/增强。这试图尽可能准确地反映原始论文中列出的参考文献,而不要求完整或完全匹配。