×

兹马思-数学第一资源

非线性等几何分析的MATLAB框架NLIGA。(英语) Zbl 07207280
概述:非线性行为在许多工程应用中很常见,例如金属成形和车辆碰撞试验。与线性系统不同,非线性问题不能用线性方程组来求解,也不能保证能找到唯一解。在这项工作中,我们开发了一个统一的框架NLIGA(nonlinear Isogeometric Analysis),主要用于在MATLAB平台上利用等几何方法求解二维和三维非线性问题。本阶段主要考虑非线性超弹性和弹塑性材料。采用Newton-Raphson方法求解非线性控制方程组。通过一系列实例验证了该方法的有效性。首先,我们提供了几十个求解线弹性基准问题的脚本,包括平面和实体问题、泊松问题、板壳问题,并将得到的数值解与精确解和有限元解进行了比较。其次,我们进一步研究了几个考虑超弹性和弹塑性材料的非线性算例,并与商业软件的结果进行了比较。在此框架下还开发了可视化程序,以可视化所获得的结果,包括位移、应力和数值误差。最后,NLIGA是一个开源框架,可以免费使用(http://nliga.sourceforge.net/).

理学硕士:
65倍x 数值逼近与计算几何(主要是算法)
PDF格式 BibTeX公司 引用
全文: 内政部
参考文献:
[1] 安托林,P。;布雷桑,A。;布法,A。;Sangalli,G.,具有局部应力投影的线性近似不可压缩弹性的等几何方法,计算。方法应用。机械。工程,316694-719(2017)·Zbl 1439.74039
[2] 巴齐列夫斯,Y。;卡罗,V。M、 。;休斯,T。J、 。;等几何流体-结构相互作用:理论、算法与计算。《机械》第43、1、3-37页(2008年)·Zbl 1169.74015
[3] 巴齐列夫斯,Y。;卡罗,V。M、 。;科特雷尔,J。A、 。;埃文斯,J。A、 。;休斯,T。J、 R。;利普顿,S。;斯科特,M。A、 。;塞德伯格,T。W、 ,用T样条进行等几何分析,计算。方法应用。机械。《工程学》,199,5-8,229-263(2010年)·Zbl 1227.74123号
[4] Belytschko,T。;斯托拉尔斯基。;刘伟。K、 。;卡彭特,N。;翁杰。S、 ,壳体有限元中薄膜应力投影和剪切锁定,计算。方法应用。机械。英国,51,1-3,221-258(1985年)·Zbl 0581.73091
[5] 布克里尔,R。;Elguedj,T。;Combescure,A.,基于nurbs的有效等几何实体壳单元:混合公式和b方法,计算。方法应用。机械。英语,267,86-110(2013年)·Zbl 1286.74096
[6] 布雷桑,A。;等几何分析中的和分解技术,计算机。方法应用。机械。工程,352437-460(2019年)·Zbl 1441.65093
[7] 别伊,T。Q、 ,压电材料裂纹扩展等几何动静态断裂分析。方法应用。机械。第50-295页,第470-295页·Zbl 1423.74866
[8] 卡塞罗,J。;瓦伦特,R。F、 。;真的,A。;基德尔,J。;奥里基奥。;德索萨,R。A、 在基于nurbs的实体壳有限元分析中,采用假定自然应变法来减轻锁紧,计算了实体壳的锁紧问题。《机械》第53、6、1341-1353页(2014年)·Zbl 1298.74226
[9] Cimrman,R.,用等几何分析增强SfePy(2014),预印本
[10] 科特雷尔,J。A、 。;休斯,T。J、 。;Bazilevs,Y.,等几何分析:走向CAD和FEA的集成(2009),John Wiley&Sons·Zbl 1378.65009号
[11] 达尔辛,L。;科利尔,N。;维格纳,P。;科尔特斯,A。;卡罗,V。M、 高性能等几何分析框架。方法应用。机械。工程学,308151-181(2016)·Zbl 1439.65003
[12] 德法尔科,C。;真的,A。;Vázquez,R.,GeoPDEs:偏微分方程等几何分析的研究工具,高级工程软件,42,12,1020-1034(2011)·Zbl 1246.35010
[13] 德索萨·内托,E。A、 。;佩里克,D。;欧文,D。R、 《塑性计算方法:理论与应用》(2008),约翰·威利与森
[14] 邓,J。;陈,F。;李,X。;胡,C。;唐,W。;杨,Z。;Feng,Y.,分层T-网格上的多项式样条,图。型号,70、4、76-86(2008)
[15] 多肯,T。;莱切,T。;佩特森,K。F、 ,局部精化箱分区上的多项式样条,计算。辅助几何。Des.,30,331-356(2013年)·Zbl 1264.41011
[16] 杜,X。;赵,G。;Wang,W.,具有不协调多片的Reissner-Mindlin板等几何分析的Nitsche方法,计算机。辅助几何。第35121-136页(2015年)·Zbl 1417.74020号
[17] 杜,X。;赵,G。;王,W。;方,H.,超弹性等几何分析中非协调多匹配耦合的Nitsche方法,计算机。《机械》,65687-710(2020年)
[18] Elguedj,T。;休斯,T。J、 近不可压缩大应变塑性等几何分析。方法应用。机械。英语,268388-416(2014)·Zbl 1295.74019号
[19] Elguedj,T。;巴齐列夫斯,Y。;卡罗,V。M、 。;休斯,T。J、 用高阶nurbs单元计算近似不可压缩线性和非线性弹塑性问题的B̄和F̄投影方法,计算。方法应用。机械。《工程》,19733-402732-2762(2008)·Zbl 1194.74518号
[20] Farin,G.,《CAGD的曲线和曲面:实用指南》(2001年),Morgan Kaufmann
[21] 加劳,E。M、 。;Vázquez,R.,使用层次B样条实现自适应等几何方法的算法,应用。数字。数学,123,58-87(2018)·Zbl 1377.65149
[22] 吉安内利,C。;JüTtler,B。;Speleers THB splines,H.,《层次样条函数的截断基》,Comput。辅助几何。Des.,29,7,485-498(2012年)·Zbl 1252.65030
[23] 吉安内利,C。;Jüttler,B。;克莱斯,S。K、 。;Mantzaflaris,A。;西门,西门。;《THB样条:几何设计和等几何分析中自适应求精的有效数学技术》,计算机。方法应用。机械。英语,299337-365(2016)·Zbl 1425.65026
[24] 希姆斯特拉,R。R、 。;桑加利,G。;塔尼,M。;卡拉布,F。;休斯,T。J、 有限元矩阵的快速生成与装配及其在等几何线弹性力学中的应用。方法应用。机械。工程学,355234-260(2019年)·Zbl 1441.74244
[25] 侯赛尼,S。;雷默斯,J。J、 。;弗霍塞尔,C。五、 。;《非线性分析的等几何类实体壳单元》,国际期刊。数字。方法工程,95,3,238-256(2013)·Zbl 1352.74362
[26] 胡,Q。;乔利,F。;胡,P。;程,G。;波达斯,S。P、 等几何分析中的斜对称Nitsche公式:Dirichlet和对称条件,斑片耦合和无摩擦接触,计算。方法应用。机械。英语,341188-220(2018年)·Zbl 1440.74403
[27] 休斯,T。J、 。;科特雷尔,J。A、 。;等几何分析:CAD,有限元,NURBS,精确几何和网格细化,计算机。方法应用。机械。《工程学》,194、39-41、4135-4195(2005年)·Zbl 1151.74419号
[28] 杰克森,N。;钱,X.,三角剖分的等几何分析,计算机。辅助设计,46,45-57(2014)
[29] 约翰尼森,K。A、 。;克瓦姆斯达尔。;Dokken,T.,使用LR B样条进行等几何分析,计算。方法应用。机械。《工程》,269471-514(2014年)·Zbl 1296.65021
[30] Jüttler,B。;兰格,美国。;Mantzaflaris,A。;摩尔,S。E、 。;Zulehner,W.,几何+模拟模块:实施等几何分析,PAMM,14,1961-962(2014)
[31] 卡门斯基,D。;Bazilevs tIGAr,Y.,FEniCS自动化等几何分析,计算机。方法应用。机械。英国,344477-498(2019年)·兹布1440.65282
[32] 基德尔,J。;布林辛格,K.-U。;林哈德,J。;Wüchner,R.,用Kirchhoff Love元素进行等几何壳分析,计算机。方法应用。机械。《工程学》,19849-523902-3914(2009)·Zbl 1231.74422
[33] Kim,N.-H.,非线性有限元分析导论(2014),Springer科学与商业媒体
[34] 李,X。;陈,F。;康,H。;邓杰,局部可加细样条的研究。《中国数学》,59,4617-644(2016)·Zbl 1338.65034
[35] 刘国瑞。;魁克,S。S、 《有限元方法:实践课程》(2013),巴特沃斯·海尼曼·Zbl 1027.74001号
[36] Mantzaflaris,A。;Jüttler,B。;霍罗姆斯基。N、 。;Langer,U.,基于Galerkin的等几何分析中的低秩张量方法,计算机。方法应用。机械。工程,3161062-1085(2017)·Zbl 1439.65185
[37] 马鲁西格,B。;休斯,T。J、 等几何分析中的修剪:挑战,数据交换和模拟方面,Arch。计算机。方法工程,25,4,1059-1127(2018)
[38] 阮,V。P、 。;阿尼特斯库,C。;波达斯,S。P、 。;等几何分析:一个概述和计算机实现方面,数学。计算机。模拟,11789-116(2015年)
[39] Nguyen Thanh,N。;阮宣。;波达斯,S。P、 A。;Rabczuk,T.,二维弹性固体分层T网格上多项式样条的等几何分析,计算机。方法应用。机械。英国,20021-221892-1908(2011)·Zbl 1228.74091号
[40] Nutils(2019年),(6月30日查阅)
[41] 保莱蒂,M。S、 。;马丁内利,M。;北卡罗来纳州卡瓦利尼。;Antolin,P.,Igatools:等几何分析库,暹罗J。科学。计算机,37,4,C465-C496(2015)·Zbl 1332.65196
[42] 皮格尔,L。;蒂勒,W.,NURBS书籍(1997年),斯普林格:斯普林格柏林,海德堡·Zbl 0868.68106
[43] 斯科特,M。A、 。;波登,M。J、 。;弗霍塞尔,C。五、 。;塞德伯格,T。W、 。;休斯,T。J、 基于T样条Bézier提取的等几何有限元数据结构。数字。方法工程,88,2,126-156(2011)·Zbl 1242.65243
[44] 斯科特,M。A、 。;辛普森,R。N、 。;埃文斯,J。A、 。;利普顿,S。;波达斯,S。P、 。;休斯,T。J、 。;塞德伯格,T。W、 非结构T样条等几何边界元分析。方法应用。机械。工程学,254197-221(2013)·Zbl 1297.74156
[45] 塞德伯格,T。W、 。;郑洁。;巴基诺夫,A。;Nasri,A.,T样条曲线和T-NURCCs,ACM Trans。图表,22,3477-484(2003)
[46] 塞茨,A。;法拉,P。;克雷姆赫勒,J。;沃姆思,B。一、 。;墙,W。A、 。;Popp,A.,计算接触力学的等几何双砂浆方法,计算机。方法应用。机械。工程,301259-280(2016)·Zbl 1425.74490
[47] 西莫,J。C、 。;休斯,T。J、 ,计算无弹性(2006),斯普林格科学与商业媒体·Zbl 0934.74003
[48] 辛普森,R。N、 。;波达斯,S。P、 。;丽安,H。;Trevelyan,J.,弹性静力分析的等几何边界元方法:二维实现方面,计算。结构,118,2-12(2013)
[49] 斯宾克,M。;克莱斯顿,D。;德法尔科,C。;巴斯克斯,R(2019年),(4月11日访问)
[50] 斯塔尔,A。;克瓦姆斯达尔。;Schellewald,C.,等几何分析结果的后处理和可视化技术,计算机。方法应用。机械。工程,316880-943(2017)·Zbl 1439.65029
[51] 施,K。Y、 。;刘,X。;Lo,S.,壳体几何非线性分析的流行基准问题,有限元。肛门。第40、11、1551-1569页(2004年)
[52] 冯,A.-V。;海因里希,C。;Simeon,B.,ISOGAT:一个用于等几何分析的二维MATLAB代码教程,计算机。辅助几何。第27、8、644-655页(2010年)·Zbl 1205.65319
[53] 王,Y。;本森,D。J、 基于参数化LSM结构拓扑优化的等几何分析,计算机。机械,57,1,19-35(2016)·Zbl 1381.74212号
[54] 王,C。;张,X。;沈,G。;王勇,金属板料成形模拟的一步逆等几何分析,计算机。方法应用。机械。英语,349458-476(2019年)·1447.74ZB第1441页
[55] 维格,O。;纳拉亚南,B。;邓恩,M。五十、 非线性、弯曲的三维梁和梁结构的等几何形状优化,计算。方法应用。机械。工程学,345,26-51(2019年)·Zbl 1440.74337
[56] 徐克。;穆拉因,B。;杜维尼奥,R。;等几何分析中计算域的参数化:方法与比较,计算机。方法应用。机械。英国,20023-242021-2031(2011)·Zbl 1228.65232
[57] 徐克。;穆拉因,B。;杜维尼奥,R。;李国平,等.用变分调和法从cad边界构造计算域的分析参数化,J。计算机。物理学,252275-289(2013年)·Zbl 1349.65079
[58] 于,T。;赖,W。;别伊,T。Q、 ,基于NURBS的Bézier提取的三维弹塑性实体模拟。机械。马特。第15、1、175-197页(2019年)
[59] 张,Y。;王,W。;休斯,T。J、 ,基于亏格零几何边界表示的实体t样条构造,计算。方法应用。机械。英语,249185-197(2012)·Zbl 1348.65057
[六十] 赵,G。;杜,X。;王,W。;刘乙。;方,H.等几何方法在多片不协调Reissner-Mindlin板自由振动中的应用,计算。辅助设计,82127-139(2017)
此参考列表基于出版商或数字数学图书馆提供的信息。它的项被试探性地匹配到zbMATH标识符,并且可能包含数据转换错误。它试图尽可能准确地反映原始论文中列出的参考文献,而不要求匹配的完整性或精确性。