×

兹马思-数学第一资源

f-SAEM:非线性混合效应模型EM算法的快速随机逼近。(英语) Zbl 07135460
摘要:从随机效应的条件分布中产生随机效应样本的能力是混合效应模型推理的基础。随机游走大都会被广泛地用于进行这种抽样,但是这种方法对于中等维问题,或者当样本分布的联合结构在空间上不均匀时,这种方法收敛缓慢。主要贡献包括基于多维高斯方案的独立Metropolis-Hastings(MH)算法,该算法考虑了随机效应的联合条件分布,不需要任何调整。实际上,由于不完全数据模型的拉普拉斯近似,这种分布是自动获得的。在连续数据的情况下,这种近似相当于将结构模型线性化。基于模拟和实际数据的数值实验表明了所提方法的有效性。在拟合非线性混合效应模型时,所提出的MH算法与EM算法的随机近似形式有效地结合起来,用于全局参数的极大似然估计。
理学硕士:
62 统计
PDF格式 BibTeX公司 XML 引用
全文: 内政部
参考文献:
[1] Agresti,A.,《分类数据分析》,Wiley Interscience出版物,XV,558 S(1990),Wiley:Wiley纽约·Zbl 0716.62001
[3] 安徒生,P.K.,生存分析,(生物统计威利参考系列(2006年))
[4] Andrieu,C.;Doucet,A.;Holenstein,R.,《粒子马尔可夫链蒙特卡罗方法》,J.R.Stat.Soc。先生。B Stat.Methodol.,72,3,269-342(2010年)·Zbl 1411.65020
[5] Andrieu,C.;Moulines,ˉ,关于一些自适应MCMC算法的遍历性性质,Ann。申请。Probab.,16,3,1462-1505(2006年)·Zbl 1114.65001
[6] Andrieu,C.;Roberts,G.O.,《有效蒙特卡罗计算的伪边缘方法》,Ann。Statist.,37,2697-725(2009年)·Zbl 1185.60083
[7] Andrieu,C.;Thoms,J.,《自适应MCMC教程》,Stat.Comput.,18,4,343-373(2008)
[8] 阿查德,Y.F.;罗森塔尔,J.S.,《自适应马尔可夫链蒙特卡罗算法》,伯努利,11,5815-828(2005)·Zbl 1085.62097
[9] Beal,S.;Sheiner,L.,《非电磁系统》,Amer。统计师,34,2,118-119(1980年)
[11] Brooks,S.;Gelman,A.;Jones,G.;Meng,X.-L.《马尔可夫链蒙特卡罗手册》(2011),CRC出版社·Zbl 1218.65001
[13] Carpenter,B.;Gelman,A.;Hoffman,M.;Lee,D.;Ben,G.;Betancourt,M.;Brubaker,M.;Guo,J.;Li,P.;Riddell,A.,Stan:概率编程语言,J.Stat.Softw.,76,1(2017)
[14] Chan,P.L.S.;Jacqmin,P.;Lavielle,M.;McFadyen,L.;Weatherley,B.,《在无症状HIV受试者中,使用MONOLIX软件估算马拉韦洛克的人群药代动力学-药代动力学-病毒动力学参数》,J.Pharmocket。药理学杂志,38,1,41-61(2011)
[15] Comets,E.;Lavenu,A.;Lavielle,M.,《使用saemix进行非线性混合效应模型的参数估计》,《SAEM算法的实现》,J.Stat.Softw.,80,3,1-42(2017年)
[16] Delyon,B.;Lavielle,M.;Moulines,E.,《EM算法随机近似版本的收敛性》,Ann。Statistist.,27,1194-128(1999年)·Zbl 0932.62094
[17] Donnet,S.;Samson,A.,在随机混合模型的EM算法中使用PMCMC:理论和实际问题,J.SFdS,155,1,49-72(2013)·Zbl 1316.60115
[18] Doucet,A.;Goddill,S.;Andrieu,C.,《贝叶斯滤波的序贯蒙特卡罗抽样方法》,Stat.Comput.,10,3,197-208(2000)
[20] Griewank,A.;Walther,A.,《求导:算法微分的原理和技术》,第105卷(2008年),暹罗·Zbl 1159.65026
[21] Haario,H.;Saksman,E.;Tamminen,J.,《自适应大都市算法》,Bernoulli,7,223-242(2001)·Zbl 0989.65004
[22] Hoffman,M.D.;Gelman,A.,《不掉头取样器:在哈密顿蒙特卡罗中自适应设置路径长度》,J.Mach。学习。第15、1593-1623号决议(2014年)·Zbl 1319.60150
[23] Kucukelbir,A.;Ranganath,R.;Gelman,A.;Blei,D.,《斯坦的自动变分推理》(Cortes,C.;Lawrence,N.;Lee,D.;Sugiyama,M.;Garnett,R.,《神经信息处理系统进展》28(2015),Curran Associates,Inc.),568-576
[24] Kuhn,E.;Lavielle,M.,将随机近似模型与MCMC程序耦合,ESAIM Probab。Stat.,8115-131(2004年)·Zbl 1155.62420
[25] Lavielle,M.,《人口方法的混合效应模型:模型、任务、方法和工具》(2014),CRC出版社
[26] Lavielle,M.;Ribba,B.,《药理学模型诊断的增强方法:条件分布随机抽样》,Pharm。第33、12、2979-2988号决议(2016年)
[27] Louis,T.A.,使用EM算法寻找观测信息矩阵,J.Roy。统计学家。Soc。爵士。B Stat.Methadol.,44226-233(1982年)·Zbl 0488.62018
[28] Mbogning,C.;Bleakley,K.;Lavielle,M.,《使用非线性混合效应模型和SAEM算法对纵向和重复时间到事件数据的联合建模》,J.Stat.Comput。模拟,85,81512-1528(2015年)
[29] McLachlan,G.;Krishnan,T.,《EM算法和扩展》,第382卷(2007年),John Wiley&Sons
[30] Mengersen,K.L.;Tweedie,R.L.,《黑斯廷斯和大都会算法的收敛速度》,Ann。统计师,24,1101-121(1996)·Zbl 0854.60065
[31] Metropolis,N.;Rosenbluth,A.W.;Rosenbluth,M.N.;Teller,A.H.;Teller,E.《快速计算机器状态方程计算》,J.Chem。物理学,21,6,1087-1092(1953)
[32] Neal,R.M.,使用哈密顿动力学的MCMC,(马尔可夫链蒙特卡罗手册,第2卷(2011)),2·Zbl 1229.65018
[33] O'Reilly,R.A.;Aggler,P.M.,《香豆素抗凝药物的研究——无负荷剂量华法林治疗的启动》,《循环》,38,1196-177(1968)
[34] Pav,S.E.,Madness:一个多元自动微分的软件包(2016)
[35] Robert,C.P.;Casella,G.,Metropolis–hastings algorithms(Metropolis–hastings algorithms),(用R(2010)介绍蒙特卡罗方法),Springer New York:Springer New York New York,NY),167-197
[36] Roberts,G.O.;Gelman,A.;Gilks,W.R.,《随机游走大都会算法的弱收敛性和最优缩放》,Ann。申请。Probab.,7,110110-120(1997年)·Zbl 0876.60015
[37] Roberts,G.O.;Rosenthal,J.S.,langevin扩散离散近似的最优标度,J.R.Stat.Soc。爵士。方法60,B.255(1997年版)·Zbl 0913.60060
[38] 《非几何收敛性的定量方法》,罗森塔尔,J。计算机。申请。Probab.,13,2391-403(2011年)·Zbl 1222.60054号
[39] Roberts,G.O.;Tweedie,R.L.,langevin分布及其离散近似的指数收敛性,Bernoulli,2,4,341-363(1996)·Zbl 0870.60027
[40] Rue,H.;Martino,S.;Chopin,N.《利用集成嵌套拉普拉斯近似对潜在高斯模型的近似贝叶斯推断》,J.Roy。统计学家。Soc。爵士。B Stat.Methadol.,第71、2、319-392页(2009年)·Zbl 1248.62156
[41] 《药物动力学与药物动力学》杂志,2011年第44期,第53期《药物动力学》;第1期《药物动力学》;第53期
[42] 斯坦开发团队,R.M.,RStan:R接口到斯坦(2018),http://mc-Stan.org/,R包版本2.17.3
[43] Stramer,O.;Tweedie,R.L.,Langevin类型模型I:具有给定固定分布及其离散化的扩散*,Methodol。计算机。申请。Probab.,1,3,283-306(1999年)·中银0947.60071
[44] Titsias,M.K.;Papaspiliopoulos,O.,《基于梯度的辅助采样算法》,J.R.Stat.Soc。爵士。统计方法。(2018年)·Zbl 1398.62035
[45] Verbeke,G.,纵向数据的线性混合模型,63-153(1997),Springer
[46] Vihola,M.,具有强制接受率的鲁棒自适应metropolis算法,Stat.Comput.,22,5,997-1008(2012年)·Zbl 1252.65024
[47] 王建民,各种药物动力学估计方法。药理学杂志,34,5575-593(2007)
[48] Zhang,Z.,生存数据的参数回归模型:以威布尔回归模型为例,人工神经网络。翻译。医学,24(2016年)
此参考列表基于出版商或数字数学图书馆提供的信息。它的项被试探性地匹配到zbMATH标识符,并且可能包含数据转换错误。它试图尽可能准确地反映原始论文中列出的参考文献,而不要求匹配的完整性或精确性。