×

庞加莱奖。百年探索数学最伟大的谜题之一。 (英语) Zbl 1158.01007号

纽约,纽约:达顿(ISBN 978-0-525-95024-0/pbk)。九,296页。(2007年)。
这本书对广大公众和专业数学家来说都是一本有趣的读物。它可以被描述为一部分历史,一部分新闻,和一部分成功的努力描绘世界的数学研究向一般观众。
在2006年马德里国际运动会上,围绕格里戈里·佩雷尔曼拒绝接受菲尔兹奖章一事进行了初步的调侃之后,这本书呈现了一本引人入胜的庞加莱传记。下一部分概述了拓扑学的发展,从欧拉对Königsberg问题的七座桥的解决方案开始,到1952年马克斯·德恩去世为止。在这里,正如整本书一样,重点是许多玩家有趣的生活,而不是实际的数学。许多名人进进出出,有时只为了一两个有趣的传记事实而留下来。
在建立了语境之后,作者试图将庞加莱猜想的内容传达给非数学的读者。考虑到这项任务不可能完成,这是一项不错的努力。然而,由于讨论中充斥着数学错误,这位专家在这里会经常退缩。例如,有人断言(当然不是在这个术语中),除了\(S^3\)本身之外,十二面体流形是唯一已知的同调球,而不是唯一具有有限基本群的同调球。基本群的讨论似乎说明了高级手把属的基本群是交换的。这些错误和其他许多错误都在本书(和类似的一本)的非常深思熟虑和普遍好评中被指出W、 B.R.利科里什[通告Am.Math.Soc.55,No.1,37–41(2008年)]。虽然这样的不准确对未经训练的读者几乎没有什么影响,但它们会分散专业人士的注意力,人们希望在本书的后续版本中,数学内容能够得到清理。
这种叙述在现代又重新流行起来,追溯了帕帕基里亚科普洛斯、宾和其他许多人关于庞加莱猜想的各种线索。人类的兴趣仍然是突出的,保持内容的可访问性,同时也有助于揭穿流行的数学家刻板印象。相当多的注意力集中在Smale对高维庞加莱猜想的证明上。关于如何通过拖延来证明接下来的证据有点微妙,这一问题被视为优先权争议中可能产生的怨恨的案例研究,这预示着佩雷尔曼时代的一些事件。本文叙述了洛克为证明三维猜想而进行的著名尝试,以及其他许多不成功的努力。
最后,瑟斯顿的工作和他的几何猜想进入了画面。描述了Hamilton证明几何猜想的程序,为Perelman的证明奠定了基础。预印本、日益增长的兴趣、公开展示、顶级专家的展示和改写以及最终被社区接受的过程被很成功地叙述,传达了伴随着著名问题解决的兴奋。曹朱的证明及其在科学技术中的争议处理。在评论家看来,邱受到了公平的对待。最后一章讨论了克莱研究所和千禧年问题,书的结尾是另一个调侃-佩雷尔曼会拒绝奖金吗?
在某些方面,这是一本杰出的书,为一般读者捕捉到数学研究的独特挑战和丰富多样的数学社区。它的缺点,在《利科里什评论》中得到了很好的检验,是数学上的错误,也许更重要的是,偶尔对人的漫不经心的对待。即使是小人物也比重复那些有时只不过是流言蜚语的事情更有价值。但总的来说,这本书弊大于利,值得在许多书架上摆上一席之地。

理学硕士:

01A60型 20世纪数学史
01A55型 19世纪数学史
53-03年 微分几何史
57-03年 流形和细胞复合体的历史
53C44号 几何演化方程(平均曲率流、Ricci流等)(MSC2010)
57米40 欧几里德空间和球面的特征(MSC2010)
00A08年 休闲数学

软件:

百吉饼
PDF格式 BibTeX公司 XML 引用