伊拉姆

多项式滤波器在k步Arnoldi方法中的隐式应用。本文描述并分析了一种新的Arnoldi方法(在对称情况下简化为Lanczos方法)计算大型通用方阵的几个特征值和相应的特征向量。利用隐式移位QR迭代的截断变量,在每次迭代中对Arnoldi(Lanczos)向量应用多项式滤波器。这种方法推广了显式重启方法。文中给出了并行计算的优点,并用矢量法作了初步讨论


zbMATH中的参考文献(参考文献200篇文章)

显示结果1到20,共200个。
按年份排序(引用)

1 2 ... 8 9 10 下一个

  1. 冯波;吴刚:关于特征对逼近的Arnoldi方法的一个新变种(2022)
  2. 巴格拉玛,詹姆斯;贝拉,汤姆;Picucci,Jennifer:计算对称矩阵几个极端特征对的混合迭代优化方法(2021)
  3. 牵连,标记;爱,珍妮弗A。;Morgan,Ronald:具有稳定控制的多项式预处理Arnoldi(2021)
  4. 胡倩颖;文,春;黄庭柱;沈、赵莉;顾显明:计算PageRank的幂次Arnoldi算法(2021)
  5. 苗族村强;吴文婷:非对称特征值问题的松弛滤波Krylov子空间方法(2021)
  6. 钢,Thijs;营地,大安;米尔伯格,卡尔;Vandebril,Raf:具有侵略性早期通货紧缩的多平移多极有理QZ方法(2021)
  7. Aishima,Kensuke:对称特征值问题迭代投影法的调和Ritz对的收敛性证明(2020)
  8. Dax,Achiya:大矩阵低阶近似的叉积方法(2020)
  9. 苗村强:对称广义特征值问题的Chebyshev-Davidson方法(2020)
  10. 波利齐,埃里克;计算材料科学与工程(2020)
  11. 王庆文;王向祥:大型四元数右特征值问题的Arnoldi方法(2020)
  12. 营地,大安;米尔伯格,卡尔;Vandebril,英国皇家空军:理性QZ方法(2019)
  13. 营地,大安;米尔伯格,卡尔;Vandebril,Raf:rationalkrylov使用核心转换的隐式过滤器(2019)
  14. 崔英根;林,约翰;罗伊,阿尼迪亚;Park,Junyong:通过线性收缩对协方差矩阵估计量的固定支持正定修正(2019)
  15. Dax,Achiya:计算大矩阵的最小奇异三元组(2019)
  16. 董,一秋;汉森,每基督徒;霍克斯滕巴赫,米切尔E。;Brogaard Riis,Nicolai André:用一个不匹配的反向投影修正代数迭代重建的不收敛性(2019)
  17. 埃尔曼,霍华德·C。;苏腾飞:随机特征值问题的低阶解方法(2019)
  18. Embree,Mark:基于投影的降阶模型中的不稳定模式:有多少种,它们告诉你什么?(2019年)
  19. 霍伊,托马斯。;黄德;林嘉纯;张子云:基于多分辨矩阵分解的快速分层预处理特征解算器(2019)
  20. 贾志刚;吴,迈克尔K。;宋广晶:大规模四元数奇异值分解的Lanczos方法(2019)

1 2 ... 8 9 10 下一个