SA集群 swMATH ID: 6867 软件作者: 程红;周,杨;黄欣;Yu,Jeffrey Xu先生 描述: 集群化大型属性信息网络:一种高效的增量计算方法近年来,许多信息网络已可用于分析,包括社会网络、道路网络、传感器网络、生物网络等。图聚类在分析和可视化大型网络方面显示出其有效性。图聚类的目标是基于各种标准(如顶点连通性或邻域相似性)将大型图中的顶点划分为簇。现有的许多图聚类方法主要关注于拓扑结构,但在很大程度上忽略了顶点属性的异构性。最近,提出了一种新的图聚类算法SA-聚类,它通过统一的距离度量将结构相似性和属性相似性结合起来。SA-Cluster执行矩阵乘法以计算图形顶点之间的随机行走距离。作为聚类细化的一部分,将迭代调整图形边缘权重,以平衡结构相似性和属性相似性之间的相对重要性。因此,在聚类过程的每次迭代中都会重复矩阵乘法,以重新计算受边缘权重更新影响的随机行走距离。为了提高SA-聚类的效率和可扩展性,本文提出了一种高效的算法Inc-cluster,在给定边权重增量的情况下,增量更新随机行走距离。提供复杂性分析以估计Inc-Cluster可以节省多少运行时成本。我们在多核体系结构上进一步设计了并行矩阵计算技术。实验结果表明,在大型图上,Inc-Cluster比SA-Cluster实现了显著的加速,同时在簇内结构内聚性和属性值同质性方面实现了完全相同的聚类质量。 主页: http://www.mendeley.com/catalog/clustering-large-attributed-graphs-efficient-incremental-approach/ 关键词: 图聚类;顶点划分;顶点属性;增量计算;并行计算;SA集群;结构和属性相似性;随机步行距离;聚类细化;边缘权重 相关软件: Inc群集;SimRank公司;戴维;应用的预测建模;记录仪;线路;ap集群;节点2vec;GraRep公司;AS 136标准;A群集;帕杰克;鲁万将军;中央情报局;格拉克勒斯;gSkeletonClu(骨架俱乐部);图形范围 引用于: 10出版物 标准条款 1出版物描述软件,包括1出版物以zbMATH为单位 年份 集群化大型属性信息网络:一种高效的增量计算方法。 Zbl 1259.05150号程红;周,杨;黄欣;Yu,Jeffrey Xu先生 2012 全部的 前5名27位作者引用 2 程红 2 黄欣 2 Yu,Jeffrey Xu先生 1 Ali-Ahmadi,B.Hoda 1 索马里阿利扎德 1 索鲁·埃米里(Sorour E.Amiri)。 1 法纳兹·巴津普尔 1 斯特凡诺·贝纳蒂 1 布里吉特·博登 1 张镇海 1 陈良哲 1 彼得·丘纳耶夫 1 马里奥斯·迪凯亚科斯。 1 斯蒂芬·格内曼 1 拉切尔·海格曼·布莱尔 1 贾拉利·奈尼,S.Golamreza 1 贾彩燕 1 乔治·帕利斯 1 安德烈亚斯·帕帕佐普洛斯 1 B.阿迪蒂亚·普拉卡什 1 Justo Albandoz港 1 Antonio M.Rodriguez-Chia。 1 托马斯·塞德尔 1 尹宪军 1 于、韩 1 郑一梅 1 周,杨 全部的 前5名7篇连载文章中引用 三 数据挖掘与知识发现 2 信息科学 1 计算 1 欧洲运筹学杂志 1 工程中的数学问题 1 应用统计学杂志 1 计算机科学评论 全部的 前5名在6个字段中引用 7 组合数学(05-XX) 7 统计学(62-XX) 6 计算机科学(68至XX) 4 博弈论、经济学、金融和其他社会和行为科学(91-XX) 1 运筹学、数学规划(90-XX) 1 信息与通信理论、电路(94-XX) 按年份列出的引文