艾伯特

科学计算和应用软件。自适应有限元方法(FEMs)是一种现代的、广泛应用的工具,它使实际计算变得可行,甚至在三维空间中也是如此。本文介绍了自适应有限元法的基本思想、组成和我们的ALBERT工具箱的实现。ALBERT的设计基于局部精细网格的自然层次结构和一般有限元空间的抽象概念。因此,可以对应用程序进行与维度无关的编程。二维和三维空间应用的数值结果表明了ALBERT的灵活性。


zbMATH中的参考文献(参考 81篇文章,1标准件)

显示第1到第20个结果,共81个。
按年份排序(引用)
  1. 非线性边界元法(适用于半无限射线边界元法)
  2. 崔明;陈,张欣;尤因,理查德.E.;秦,关;陈,洪森:对流占优扩散问题自适应Galerkin特征方法的可靠有效误差控制(2012)
  3. Kreuzer,Christian;Möller,Christian A.;Schmidt,Alfred;Siebert,Kunibert G.:热方程自适应离散化的设计和收敛性分析(2012)
  4. Mekchay,Khamron:椭圆偏微分方程自适应有限元法在图上的Laplace-Beltrami算子中的应用(2012)
  5. Siebert,Kunibert G.:自适应有限元软件的数学基础设计(2012)
  6. 钟刘强;陈龙;舒,石;维特姆,加布里埃尔;徐金超:时谐麦克斯韦方程自适应边界有限元方法的收敛性和最优性(2012)
  7. Dzumadil'daev,Askar;Zusmanovich,Pasha:替代歌剧不是Koszul(2011)
  8. Fuhrmann,Jürgen;Linke,Alexander;Langmach,Hartmut:流体流动和溶质运移之间质量守恒耦合的数值方法(2011)
  9. Baňas,L'ubomír:微磁学中麦克斯韦方程组的有效多重网格预处理器(2010)
  10. Banas,Lubomír;Prohl,Andreas:多流体非稳态不可压缩磁流体动力学方程的收敛有限元离散化(2010)
  11. Baňas,L'ubomír;Prohl,Andreas;Schätzle,Reiner:非恒定半径球体中的谐波映射热流和波映射的有限元近似(2010)
  12. Ern,Alexandre;Vohralík,Martin:基于热方程势流重构的后验误差估计(2010)
  13. Baňas,L'ubomír;Nürnberg,Robert:(\mathbbR^3)中表面扩散和空洞电迁移的相场计算(2009)
  14. Giani,S.;Graham,I.G.:椭圆特征值问题的收敛自适应方法(2009)
  15. Mosler,J.;Ortiz,M.:有限应变下耗散固体的无误差估计和无重映射的变分网格细化和粗化方法(2009)
  16. 毕加索,M.:各向异性自适应有限元框架下共轭梯度算法的停止准则(2009)
  17. 张健;杜强:在sharp界面极限下对Allen-Cahn方程离散逼近的数值研究(2009)
  18. Baňas,L'ubomír;Bartels,Sören;Prohl,Andreas:Maxwell-Landau-Lifshitz-Gilbert方程的收敛隐式有限元离散化(2008)
  19. Baňas,Ľubomír;Nürnberg,Robert:三维相场模型的有限元逼近(2008)
  20. Barrett,John W.;El Alaoui,Linda:不溶性表面活性剂存在下双层液膜的有限元近似(2008)