本网站由以下捐款支持:OEIS基金会.

西尔宾斯基三角形

来自OeisWiki
(重定向自Sierpiánski垫片)
跳转到:航行,搜索


这篇文章需要做更多的工作。

请帮助扩展它!


西尔宾斯基三角形,以以下名称命名瓦克·瓦夫·西尔宾斯基,是帕斯卡三角形 2.

西尔宾斯基三角形(帕斯卡三角形模块2)
n个
[行(n个)]2 = [  
n个
  = 0
  
((
n个
)模块2)2  ]2 = [  
  日志2 n个 ⌋
  = 0
  
F类 (
  n个  / 2
模块2)
]2 = 
[  
  日志2 n个 ⌋
  = 0
  
(22+ 1)(
  n个  / 2
模块2)
]2

A006943号一排排的西尔宾斯基三角形(帕斯卡三角形模型2).
A047999号Sierpiánski三角形的级联行(Pascal三角形模型2).
[行(n个)]10


(A001317号)
0 1 1
1 1 1
2 1 0 1 5
1 1 1 1 15
4 1 0 0 0 1 17
5 1 1 0 0 1 1 51
6 1 0 1 0 1 0 1 85
7 1 1 1 1 1 1 1 1 255
8 1 0 0 0 0 0 0 0 1 257
9 1 1 0 0 0 0 0 0 1 1 771
10 1 0 1 0 0 0 0 0 1 0 1 1285
11 1 1 1 1 0 0 0 0 1 1 1 1 3855
12 1 0 0 0 1 0 0 0 1 0 0 0 1 4369
13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107
14 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65535
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 65537
17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 196611
18 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 327685
19 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 983055
20 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1114129
21 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 3342387
22 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 5570645
23 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 16711935
24 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 16843009
25 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 50529027
26 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 84215045
27 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 252645135
28 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 286331153
29 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 858993459
30 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1431655765
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4294967295
32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4294967297
  = 0
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

西尔宾斯基的三角形行

西尔宾斯基的三角形行
n个
[(n个)]2
[(n个)]10
因子分解为费马数
0 1 1
1 11 (11)2= 3 =F类0
2 101 5 (101)2= 5 =F类1
1111 15 (11)2⋅ (101)2= 3 ⋅ 5 =F类0 F类1
4 10001 17 (10001)2= 17 =F类2
5 110011 51 (11)2·(10001)2= 3 ⋅ 17 =F类0 F类2
6 1010101 85 (101)2⋅ (10001)2= 5 ⋅ 17 =F类1 F类2
7 11111111 255 (11)2⋅ (101)2⋅ (10001)2= 3 ⋅ 5 ⋅ 17 =F类0 F类1 F类2
8 100000001 257 (100000001)2= 257 =F类
9 1100000011 771 (11)2·(100000001)2= 3 ⋅ 257 =F类0 F类
10 10100000101 1285 (101)2⋅ (100000001)2= 5 ⋅ 257 =F类1 F类
11 111100001111 3855 (11)2⋅ (101)2⋅ (100000001)2= 3 ⋅ 5 ⋅ 257 =F类0 F类1 F类
12 1000100010001 4369 (10001)2⋅ (100000001)2=17·257=F类2 F类
13 11001100110011 13107 (11)2⋅ (10001)2⋅ (100000001)2= 3 ⋅ 17 ⋅ 257 =F类0 F类2 F类
14 101010101010101 21845 (101)2⋅ (10001)2⋅ (100000001)2= 5 ⋅ 17 ⋅ 257 =F类1 F类2 F类
15 1111111111111111 65535 (11)2⋅ (101)2⋅ (10001)2⋅ (100000001)2= 3 ⋅ 5 ⋅ 17 ⋅ 257 =F类0 F类1 F类2 F类
16 10000000000000001 65537 (10000000000000001)2=65537=F类4
17 110000000000000011 196611 (11)2⋅ (10000000000000001)2= 3 ⋅ 65537 =F类0 F类4
18 1010000000000000101 327685 (101)2⋅ (10000000000000001)2= 5 ⋅ 65537 =F类1 F类4
19 11110000000000001111 983055 (11)2⋅ (101)2⋅ (10000000000000001)2=3·5·65537=F类0 F类1 F类4
20 100010000000000010001 1114129 (10001)2⋅ (10000000000000001)2= 17 ⋅ 65537 =F类2 F类4
21 1100110000000000110011 3342387 (11)2⋅ (10001)2⋅ (10000000000000001)2= 3 ⋅ 17 ⋅ 65537 =F类0 F类2 F类4
22 10101010000000001010101 5570645 (101)2⋅ (10001)2⋅ (10000000000000001)2= 5 ⋅ 17 ⋅ 65537 =F类1 F类2 F类4
23 111111110000000011111111 16711935 (11)2⋅ (101)2⋅ (10001)2⋅ (10000000000000001)2= 3 ⋅ 5 ⋅ 17 ⋅ 65537 =F类0 F类1 F类2 F类4
24 1000000010000000100000001 16843009 (100000001)2= (10000000000000001)2= 257 ⋅ 65537 =F类 F类4
25 11000000110000001100000011 50529027 (11)2⋅ (100000001)2=(10000000000000001)2= 3 ⋅ 257 ⋅ 65537 =F类0 F类 F类4
26 101000001010000010100000101 84215045 (101)2⋅ (100000001)2= (10000000000000001)2= 5 ⋅ 257 ⋅ 65537 =F类1 F类 F类4
27 1111000011110000111100001111 252645135 (11)2⋅ (101)2⋅ (100000001)2= (10000000000000001)2=3·5·257·65537=F类0 F类1 F类 F类4
28 10001000100010001000100010001 286331153 (10001)2⋅ (100000001)2= (10000000000000001)2= 17 ⋅ 257 ⋅ 65537 =F类2 F类 F类4
29 110011001100110011001100110011 858993459 (11)2⋅ (10001)2⋅ (100000001)2=(10000000000000001)2= 3 ⋅ 17 ⋅ 257 ⋅ 65537 =F类0 F类2 F类 F类4
30 1010101010101010101010101010101 1431655765 (101)2⋅ (10001)2⋅ (100000001)2= (10000000000000001)2= 5 ⋅ 17 ⋅ 257 ⋅ 65537 =F类1 F类2 F类 F类4
31 11111111111111111111111111111111 4294967295 (11)2⋅ (101)2⋅ (10001)2⋅ (100000001)2= (10000000000000001)2= 3 ⋅ 5 ⋅ 17 ⋅ 257 ⋅ 65537 =F类0 F类1 F类2 F类 F类4
32 100000000000000000000000000000001 4294967297* (100000000000000000000000000000001)2= 4294967297*=F类5
*F类5= 4294967297 = 641 ⋅ 6700417是第一个混合成的Fermat编号。从这里开始,没有其他费马数是已知的素数。

西尔宾斯基的三角形行和可构造(带直尺和指南针)的奇数面多边形

对于
n个= 1
31,我们得到了5已知费马素数,给出的边数可构造的奇边多边形如果没有其他费马素数,那么就没有更多可构造的(使用直尺和指南针)奇边多边形。

行公式

通过归纳可以证明,被解释为二进制数的Sierpiñski三角形的行是不同的费马数(丹顿·休吉尔的身份[1])

     
[行(n个)]2 = [  
n个
  = 0
  
((
n个
)模块2)2  ]2 = [  
  日志2 n个 ⌋
  = 0
  
F类  (
  n个  / 2
模块2)
]2 = 
[  
  日志2 n个 ⌋
  = 0
  
(22+ 1)(
  n个/2
模块2)
]2 .

防感应:

  • 基本情况:对于行0,我们得到1(空产品),中不同费马数的乘积{ };
  • 归纳假说:假设任何一行
    n个, 0n个  ≤   2k个 −  1,
    是不同费马数的乘积
    {F类0 , ...,F类k个负极1}

     
[行(n个)]2 = [  
  日志2 n个 ⌋
  = 0
  
F类  (
  n个  / 2
模式2)
]2 = [  
  日志2 n个 ⌋
  = 0
  
(22+ 1)(
  n个  / 2
模块2)
]2 ,

那么对于任何一行
2k个+n个, 0n个  ≤   2k个 −  1,
我们有
     
[行(2k个+n个)]2==============================================================[行(n个)]2[F类k个  ]2 = [  
  日志2 n个 ⌋
  = 0
  
F类  (
  n个  / 2
模块2)
]2[F类k个  ]2 = 
[  
k个
  = 0
  
F类  (
  n个  / 2
模块2)
]2 = [  
  日志2(2k个+n个)
  = 0
  
F类  (
  n个  / 2
模块2)
]2 .

作为特殊情况,行
2n个,n个  ≥  0,
F类n个
,的
n个
第个 费马数.

序列

A006943号西尔宾斯基三角形(帕斯卡三角形mod 2)行。

{1, 11, 101, 1111, 10001, 110011, 1010101, 11111111, 100000001, 1100000011, 10100000101, 111100001111, 1000100010001, 11001100110011, 101010101010101, 1111111111111111, 10000000000000001, 110000000000000011, 1010000000000000101, ...}

A047999号西尔宾斯基三角形(或Sierpinski垫圈):三角形,按行读取,通过读取形成帕斯卡三角形mod 2.

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, ...}
A001317号Sierpinski的三角形(Pascal的三角形mod 2)行转换为十进制。(
n个0
)
{1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, ...}

另请参见

笔记

  1. 安蒂·卡图恩,斐波那契表示中的帕斯卡三角模2(摘要)。

外部链接