来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a324975 Showing 1-1 of 1 %I A324975 %S A324975 6,10,12,8,8,10,6,6,8,18,52,12,12,18,98,164,22,6,50,8,96,34,52,46,52, %T A324975 6,6,156,20,46,36,32,16,8,304,36,20,36,10,316,76,468,8,30,24,1580,84, %U A324975 54,8,12,250,28,92,36,20,418,456,928,188,16,8,276,284,56,144 %N A324975 Rank of the n-th Carmichael number. %C A324975 See A324974 for definition and explanation of rank of a special polygonal number, hence of rank of a Carmichael number A002997 by Kellner and Sondow 2019. %C A324975 The ranks of the primary Carmichael numbers A324316 form the subsequence A324976. %H A324975 Amiram Eldar,n,a(n)n=1…10000的表%H A324975 Bernd C. Kellner和Jonathan Sondow,关于CalMekes和多边形数、伯努利多项式和Base-P数字的和,ARXIV:1902.10672 [数学,NT ],2019。%%H A324975 Bernd C. Kellner,关于初等Carmichael数,ARXIV:1902.11283 [数学,NT ],2019。%%H A324975维基百科,多边形数%F A324975 A(n)=2+2 *((m/p)- 1)/(p-1),其中m= a00 997(n)和p是其最大素数因子。因此,(n)是(Carmichael)的定理,即,如果M= A00 997(1)=561=3×11*17,则P-1除以(M/P)- 1,对于CARMICEL数M AE A324975的任何素因子p,则P=17,因此A(1)=2+2*((561/17)-1)/(17-1)=1。PrimeQ[n]]; %t A324975 GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; %t A324975 Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}] %Y A324975 Subsequence of A324974. %Y A324975 A324976 is a subsequence. %Y A324975 Cf. also A002997, A324316, A324972, A324973, A324977. %K A324975 nonn %O A324975 1,1 %A A324975 _Bernd C. Kellner_ and _Jonathan Sondow_, Mar 24 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE