来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a302920 Showing 1-1 of 1 %I A302920 %S A302920 1,2,3,3,4,5,4,4,3,7,6,7,6,7,8,8,7,7,6,5,7,6,8,6,8,7,9,9,7,6,6,9,7,5, %T A302920 8,5,9,9,10,10,9,14,7,5,11,8,8,11,10,10,12,10,6,12,11,10,8,9,10,11,8, %U A302920 7,15,5,11,8,14,10,7,10 %N A302920 Number of ways to write prime(n)^2 as x^2 + 2*y^2 + 3*2^z with x,y,Z非负整数。%C A30920猜想:A(n)>0,所有n>0。换言之,对于任何素数p,都有非负整数x、y和z,使得A301471a中提到的x^ 2+2*y^ 2+3×2 ^ z=p ^ 2 .% %C a3029,对于复合数m=5884015571=7×17*49445509,不存在非负整数x,y,z,使得x^ 2+2*y ^ ^+***=z=m ^ ^。n,a(n)n=1…6000的表%H A30920支伟隼,拉格朗日四方定理的改进J.数论175(2017),167—190 .% %H A30920支伟隼,四方格的和+ + *,*,η,ε,e,a30220a,(α)=α,具有素数(η)^=α=α+α+α+α=α^ +α*α^ +α* ^ ^π。,ARXIV:1701.05868 [数学,NT ],2017~2018 .% %E A30920A(1)=1,素数(1)^ 2=4=1 ^ 2 +2×0 2 %t A302920 g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; %t A302920 QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); %t A302920 tab={};Do[r=0;Do[If[QQ[p[n]^2-3*2^k],Do[If[SQ[p[n]^2-3*2^k-2x^2],r=r+1],{x,0,Sqrt[(p[n]^2-3*2^k)/2]}]],{k,0,Log[2,p[n]^2/3]}];[TAB,R],{ n,1,70};打印[A000 000,A000 00 79,A000 0290,AA242424,A29 9537,A29 949,A300 219,A300 362,A300 39 6,A300 510,A301376,A301391,A301452,A301471A,A301472。标签=追加4月15日在OEIS终端用户许可协议下可用的2018μl内容:HTTP:/OEIS.Org/许可证