来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a277328 Showing 1-1 of 1 %I A277328 %S A277328 0,0,1,0,0,1,2,0,0,2,2,1,1,2,3,0,0,3,3,1,1,4,4,1,1,4,4,2,2,3,4,0,0,4, %T A277328 4,3,2,5,6,1,1,7,6,2,3,6,6,1,1,6,6,3,3,7,7,2,2,6,6,3,3,4,5,0,0,5,5,4, %U A277328 4,8,8,2,2,9,9,4,4,8,9,1,1,10,9,5,5,10,11,2,2,11,10,5,6,8,8,1,1,8,8,5,4,10,11,3,3,12 %N A277328 Number of primes (counted with multiplicity) dividing gcd(A260443(n), A260443(n+1)): a(n) = A001222(A277198(n)). %H A277328 Antti Karttunen,n,a(n)n=0…8192的表%F A277328 a(n) = A001222(A277198(n)). %F A277328 a(n) >= A277327(n). %o A277328 (Scheme) %o A277328 (define (A277328 n) (A001222 (A277198 n))) %o A277328 ;; A standalone implementation: %o A277328 (define (A277328 n) (reduce + 0 (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n))))) %o A277328 (definec (A260443as_coeff_list n) (cond ((zero? n)((列表))((=1 N)(列表1))(偶数)n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2)))))) %o A277328 (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0))))))) %o A277328 (define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0))))))) %Y A277328 Cf. A001222, A125184, A260443, A277198, A277327. %K A277328 nonn,look %O A277328 0,7 %A A277328 _Antti Karttunen_, Oct 13 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE