来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a277071 Showing 1-1 of 1 %I A277071 %S A277071 41,43,59,86,88,91,113,118,123,135,155,172,176,177,182,185,209,215, %T A277071 226,236,239,248,261,267,270,273,275,279,307,310,311,337,339,344,347, %U A277071 352,354,364,365,367,369,370,371,377,383,405,407,418,425,427,430,452,455,465,472,473,475,478,479,496,499 %N A277071 Numbers n for which A277070(n) does not equal A237442(n). %C A277071 These are numbers n for which the greedy algorithm A276380(n) produces a partition of n with more than A237442(n) terms that are all unique and in A003586. %C A277071 A276380(n) = A237442(n) if n is in A003586. 在A00 358中,可能存在不止一个具有独特术语的分区。在{{ 41, 43, 59,86, 88, 91,113, 118,…} } %A270770(n)-A23 442(n)=2的{70870(n)-A23 742(n)=1,{{279, 371, 558,837, 1116, 1240,1267,…} } A27 707A27 7070(n)-A23 442(n)=3,{2777, 5554,}} %2A77071. V.DimITROV,G. Jullien,R. Muscedere,多基数系统理论和应用,第二E.,CRC出版社,2012,pp.35-39 .%%H A27 707A Michael De Vlieger,A(n)中的第一个n为质量n=88。n,a(n)n=1…3000的表%E A770741是在序列中,因为A27 6380(41)={1,4,36},因此A27 7070(41)=3,但A23 742(41)=2。41的所有分区都是在A000 358中的唯一项,{9},32 }。因为%A66380(88)={1,6,81},所以A%A70707A 88是序列中的,因此A27 7070(88)=3,但A23 742(41)=2。有88个具有唯一项的2个分区,它们都在A00 358:{16.72}和{24.64 }中。%TAA70707F[n]:=长度[ABS@差异@α,最后一个],Ky/(k==0)@ @ NestStistelist[O[-] - SelectFirst [α] -范围[0,α-1 ],模[{a=α,b=6 },同时]和[a!= 1!Coprimeq[a,b],b=gCD[a,b];a=1)&,n,α>1 & ];{P=选择[范围] n,因子整数[α] [[-1, 1 ] ]<4 },k=1 },而[{}==安静@整数分割[n,{k},p,1,k++];k];选择[范围@ 500,f@η]!=G.A.77071A.A73576,A23 742,A27 6380,A27 7070,K %A27 707AN N7070A A27 70711,1%,A77071MeCe de VLeigeRe],9月27日2016‰的内容在OEIS最终用户许可协议下可用:HTTP:/OEIS.Org/许可证