#来自在线整数序列百科全书的问候!http://oeis.org/; 搜索:id:a224418 展示1-1的1个1 ;%I a224418;%S a224418 2,3,2,2,2,11,2,11,2,13,19,19,19,19,13,29,19,19,19,13,43,7,7,59,13,29,29,3,13,29,3,131 79,29173,19,19,;%T a224418 3163,23,3101,71131977,5157,5157,5157,43,13,13,73,2,2,89197171515113113,3,13,13,13,13,2,19,19,19,13,13,19,19 a224418 31,23,9717324181109487157,17,29,89109257317 %N a224418使得和{k=0}^np(k)*x^{N-k}是不可约模q,其中p(k)是分区数a00041(k);%C A224418猜想:a(n)<n^2,n>1。 %H A224418 Zhi Wei Sun,n=1..400的n,a(n)表%A224418 a(2)=3自sum{k=0}^2 p(k)*x{n-k}=x^2+x+2是不可除的模3但可约的模2的可约的模2。;%t A224418 a[n,x]:=a[n,x]=sum[PartitionsP[k]*x ^(n-k),{k,0,n}];%t A224418做[如果[不可约的无可还原的社会总式[a[n,x]的[a[n,x],模数->素素素素素素素素素素数]做[做[如果[如[不可约的无可约的无可约的如[a[n,x[n,x][k]==真,打印[n,”,素数[k]];转到[aa]],{k,1,PrimePi[Max[1,n^2-1]]}]; %t A224418打印[n,”,反例];Label[aa];Continue,{n,1100}] %Y A224418 Cf.A000040,A000041,A224417,A224416,A220072,A223934,A224210,A217788,A224197。 %K A224418 nonn %O A224418 1,1 %A A224418 %A A224418 Sun Zhi-Wei Sun ,2013年4月6日 内容根据OEIS最终用户许可协议提供:http://OEIS.org/License