来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a218750 Showing 1-1 of 1 %I A218750 %S A218750 0,1,48,2257,106080,4985761,234330768,11013546097,517636666560, %T A218750 24328923328321,1143459396431088,53742591632261137, %U A218750 2525901806716273440,118717384915664851681,5579717091036248029008,262246703278703657363377 %N A218750 a(n) = (47^n-1)/46. %C A218750 Partial sums of powers of 47 (A009991). %H A218750 Vincenzo Librandi,n,a(n)n=0…600的表%H A218750与部分和相关的索引条目%H A218750与Q-数相关的索引条目%H A218750常系数线性递归的索引项,签名(48,-47)%%F A218750A(n)=楼层(47 ^ n/46).%f f A218750G.F: x/(47×X^ 2-48×x+1)=x/((1-x)*(1-47×x))。[K-Calin Balkki],NOV 06 2012(2012)F A218750 A(0)=0,A(n)=47*A(N-1)+1。- _Vincenzo Librandi_, Nov 08 2012 %t A218750 Table[(47^n - 1)/46, {n, 0, 19}] (* _Alonso del Arte_, Nov 04 2012 *) %t A218750 LinearRecurrence[{48, -47}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 08 2012 *) %o A218750 (PARI) A218750(n)=47^n\46 %o A218750 (Maxima) A218750(n):=(47^n-1)/46$ makelist(A218750(n),n,0,30); /* _Martin Ettl_, Nov 07 2012 */ %o A218750 (MAGMA) [n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 08 2012 %Y A218750 Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723. %K A218750 nonn,easy %O A218750 0,3 %A A218750 _M. F. Hasler_, Nov 04 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE