#来自在线整数序列百科全书的问候!http://oeis.org/搜索:id:a198216显示第1-1页,共1页%一号A198216%S A198216 8,5,0,4,4,0,0,8,1,4,2,7,0,0,8,5,3,8,5,4,7,9,1,3,1,7,8,9,1,5,5,7,8,%电话A198216 2,5,8,5,6,6,9,5,9,9,1,4,6,9,9,8,3,3,9,3,8,3,7,7,4,8,7,8,8,1,2,2,2,%U A198216 4,3,4,5,2,2,6,4,2,2,8,7,0,0,8,6,1,1,9,6,7,7,4,3,3,7,5,9,5,0,8%N A198216最小x的十进制展开式,具有3*x^2+x=2*cos(x)。%C A198216有关相关序列的指南,请参阅A197737。Mathematica程序包括一个图形。%e A198216最小x:-0.85044081427008538547913177891557825。。。%e A198216最大x:0.59486328035771871417159207790102787。。。%t A198216 a=3;b=1;c=2;%t A198216 f[x_x]:=a*x^2+b*x;g[x_x]:=c*Cos[x]%t A198216绘图[{f[x],g[x]},{x,-1,1}]%t A198216 r1=x/。FindRoot[f[x]==g[x],{x,-.9,-.8},工作精度->110]%t A198216实数[r1](*A198216*)%t A198216 r2=x/。FindRoot[f[x]==g[x],{x,.59,.6},工作精度->110]%t A198216实数[r2](*A198217*)%Y A198216比照A197737。%K A198216无,cons%O A198216 0,1%2011年10月22日,A198216克拉克•金伯利#根据OEIS最终用户许可协议提供内容:http://oeis.org/LICENSE